MECANISMOS FARMACOLOGICOS DE LA INMUNOSUPRESION

Dr. PLUTARCO NARANJO
Facultad de Medicina, Universidad Central y Laboratorios "LIFE" - Quito

Uno de los capítulos más nuevos y de creciente interés en la farmacología es el de las drogas que bajo una denominación muy amplia y general, se ha dado en llamar "inmunosupresoras", la mayoría de las cuales han sido sintetizadas u obtenidas del reino vegetal, dentro de planes destinados a la obtención de drogas antineoplásicas. En algunos campos médicos ha sucedido que la farmacología y la terapéutica han avanzado mucho más que los conocimientos fisiopatológicos; en cambio en otros, y entre estos habría que incluir a los fenómenos de inmunosupresión, quizás la fisiopatología ha avanzado mucho más que la farmacología.

A fin de precisar posibles mecanismos de acción y las perspectivas de desarrollo medicamentosos selectivos, es necesario hacer una breve revisión actualizada de la fisiopatología de los fenómenos inmunitarios.

La respuesta a la estimulación antigénica

La estimulación antigénica del organismo humano trae como consecuencia una respuesta compleja y variada (Tabla I). En esta respuesta distinguimos dos fases: la primera o primaria, corresponde a lo que clásicamente se ha denominado el período de incubación o latencia y que, generalmente, se lo asociaba sólo a la producción de anticuerpos; en la actualidad, y de acuerdo a la experiencia de que existe, de una parte, un fenómeno humoral, ligado a la producción de anticuerpos y de otra, uno de carácter celular, dependiente de la producción de linfocitos pequeños, "sensibilizados", sería más amplio considerar que esta fase consiste en la producción de células inmunológicamente competentes, una de cuyas categorías produce las immunoglobulinas. La segunda respuesta que podríamos denominarla reacción, que se produce cuando el organismo recibe, por segunda vez, el mismo antígeno, después de que ya se han producido las células inmunológicamente competentes puede consistir en la protección del organismo, gracias a que células y anticuerpos son capaces de bloquear al antígeno, trátese de una bacteria, un virus, etc. y que fue el fenómeno que se descubrió
TABLA I

RESPUESTA AL ESTIMULO ANTIGENICO

<table>
<thead>
<tr>
<th>Estimulación y primera respuesta</th>
<th>Segunda respuesta:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Incubación o latencia)</td>
<td>REACCIÓN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inmunoprotección</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Estado de inmunidad)</td>
<td></td>
</tr>
</tbody>
</table>

Inmunoprotección

Inmunoagresión:

- Tipo inmediato (alergia inmediata)
- Tipo tardío (alergia tardía)
- Reacción inmunosérica
- Reacción inmunocitotítica

inicialmente. Desde entonces se han identificado casi todos los fenómenos inmunitarios con este tipo de respuesta. Pero la reacción puede consistir, por el contrario, en una serie de trastornos y el fenómeno podría denominarse de “inmunoprotección”. Desde el punto de vista fisiopatológico Gell y Coombs\(^1\) y otros\(^2\) subdividen la inmunoprotección en cuatro clases: a) el tipo inmediato, que corresponde a lo que, desde hace muchos años, se denomina alergia inmediata; b) el tipo tardío, que correspondería a la llamada alergia tardía; c) la reacción inmunosérica, consistente en la producción de complejos solubles de antígeno-anticuerpo y, d) la reacción inmunocitotítica.

Desde el punto de vista farmacológico interesa, de una parte, disponer de drogas que sean capaces de volver más eficiente la inmunoprotección, por ejemplo mediante el uso de adyuvantes, como el Freund\(^3\)-\(^4\), para estimular la producción de anticuerpos que podríamos llamarles “protectivos”; y de otra, disponer de drogas que, en una u otra forma inhiban o supriman la inmunoprotección.

1. La respuesta “primaria”

Simplificando hasta reducir a un esquema muy sencillo la serie de eventos celulares y bioquímicos que constituyen la primera respuesta, pueden distinguirse dos momentos esenciales (fig. 1): a) En el primer momento interviene el macrófago el cual entra en contacto con el antígeno y luego lo incorpora a su citoplasma celular. La molécula antigénica, generalmente, consiste en una proteína con uno o más “determinantes” antigénicos, es decir, sitios de uno o más aminoácidos, que son los que específicamente determinan la estimulación antigénica, con producción de anticuerpos o inmunoglobulinas que selectivamente, reaccionan con este determinante antigénico\(^5\). Una vez que el antígeno ha sido engullido por el macrófago, según su naturaleza química,
puede ser previamente digerido y luego transformado en “inmunógeno” o actúa, de inmediato como inmunógeno y se combina con una primera cadena de ácidos ribonucleicos6,7, de bajo peso molecular, quizás semejante a los ácidos ribonucleicos de transporte (ARNt); a continuación intervendría otra cadena de ácidos ribonucleicos de mayor peso molecular, quizás semejante a las cadenas de ácidos ribonucleicos mensajeros (ARNm) o se sintetizaría de novo, ante la presencia del complejo inmunógeno-ARN. b) En un segundo momento los linfocitos se acercan hacia este macrófago, emiten a manera de seudópodos prolongaciones denominadas urópodos, a través de los cuales el macrófago, transfiere probablemente la “información inmunológica”, que consistiría quizás en esas cadenas de ácidos ribonucleicos. Cualquiera que sea el mecanismo de esta transferencia, el hecho es que este estímulo químico determina un raro y extraordinario fenómeno biológico: el linfocito comienza a desdiferenciarse y vuelve al estado de linfoblasto, después de lo cual comienza, activamente, a reproducirse como si se tratase de una célula embrionaria. Como resultado de esta proliferación celular se producen dos series de células inmunológicamente competentes: la célula plasmática o plasmocito y el llamado linfocito pequeño. La maduración de la célula plasmática se produce en cuatro a cinco días, aproximadamente. La célula se enriquece en retículo endoplasmico y comienza a producir las inmunoglobulinas (fig. 2), sobre todo IgG. Según parece, las formas blásticas, son capaces también de...
FIGURA 2

ESTRUCTURA DE LA INMUNOGLOBULINA G (IgG). — La IgG, que es el tipo de anticuerpo más común en las reacciones inmunitarias, está constituida por dos tipos de cadenas de aminoácidos, que en total serían 1320. A su vez, cada una comprende dos cadenas simétricas. La una es denominada pesada (puntos negros en el esquema), compuesta de 440 aminoácidos, y la otra es denominada LIVIANA (puntos blancos en el esquema), compuesta de 220 aminoácidos. Estas largas cadenas se repliegan y unen por átomos de azufre de las moléculas de cistina. Por hidrólisis los anticuerpos se fraccionan en segmentos, siendo éstos: el segmento FAB, por cuyos extremos (porción que aparece entre líneas discontinuas) el anticuerpo se une al respectivo antígeno, y segmento FC, por medio del cual puede reaccionar con el complemento o fijarse a los tejidos. (Esquema basado en el de G. Edelman).

producir otro tipo de anticuerpo, la IgM, cuya producción se inhibe al momento que comienza la producción masiva de IgG.

La farmaco-inmunosupresión

La mayoría de drogas inmunosupresoras actúan durante este segundo momento de la primera respuesta. Es muy poco lo que se ha investigado sobre las posibilidades de inhibición del macrófago, tanto en su captación del antígeno cuanto en el proceso de la transmisión de la información antígenica. Tampoco se ha investigado. Con amplitud, la posibilidad de inhibir, mediante drogas, el proceso de desdiferenciación del linfocito. En cambio, desde hace mucho tiempo, era conocido el hecho...
<table>
<thead>
<tr>
<th>TABLA II</th>
</tr>
</thead>
<tbody>
<tr>
<td>DROGAS INMUNOSUPRESORAS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimetabolitos</th>
<th>Adenina o purina</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aminopterina</td>
</tr>
<tr>
<td></td>
<td>Metotrexate (Ametopterina)</td>
</tr>
<tr>
<td></td>
<td>6-Mercaptopurina (Purinethol)</td>
</tr>
<tr>
<td></td>
<td>6-Cloropurina y otros halogenados</td>
</tr>
<tr>
<td></td>
<td>Tioguanina</td>
</tr>
<tr>
<td></td>
<td>Azatioprina (Imurán)</td>
</tr>
<tr>
<td></td>
<td>Azaguanina</td>
</tr>
<tr>
<td>Uracilo y Pirimidina</td>
<td>5-Fluoruracilo (Fluoruracil) y otros halogenados</td>
</tr>
<tr>
<td></td>
<td>5-Fluoropirimidinas</td>
</tr>
<tr>
<td>Glutamina</td>
<td>Azaserina</td>
</tr>
<tr>
<td></td>
<td>DON (Diazoxoxo-norleucina)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substancias alquilantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meclorretamina (Mustargén)</td>
</tr>
<tr>
<td>TEM</td>
</tr>
<tr>
<td>Ciorambucil (Leukérán)</td>
</tr>
<tr>
<td>TioTEPA</td>
</tr>
<tr>
<td>Busulfán (Mylerán)</td>
</tr>
<tr>
<td>Sarcolisinas</td>
</tr>
<tr>
<td>Melfalán (Alkerán)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mostazas nitrogenadas</th>
<th>Derivados fosforados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciclofosfamida (Citoxán, Endoxán)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hormonas naturales y sintéticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticoesteroide</td>
</tr>
<tr>
<td>Hormonas sexuales</td>
</tr>
<tr>
<td>Dromostanolone</td>
</tr>
<tr>
<td>Dromostanolone (Drolban)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antibióticos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinomicina D (Cosmegen)</td>
</tr>
<tr>
<td>Mitomicina C</td>
</tr>
<tr>
<td>Bleomicina</td>
</tr>
<tr>
<td>Otros</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substancias varias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinblastine (Velban)</td>
</tr>
<tr>
<td>Vincristine (Oncovin)</td>
</tr>
<tr>
<td>Alcaloides y otros principios vegetales</td>
</tr>
<tr>
<td>Uretano</td>
</tr>
<tr>
<td>Sueros antilinfocíticos</td>
</tr>
<tr>
<td>Radioisótopos</td>
</tr>
</tbody>
</table>
de que numerosas substancias químicas pueden interferir en el complejo proceso bioquímico que interviene en la proliferación celular. En esta fase del proceso inmunológico hay, en realidad, un fenómeno de neogénesis especial, selectivo, controlado o mejor, autoregulado pero, en definitiva, neogénesis, estableciéndose entonces para el ataque medicamentosamente, un denominador común con las neoplasias. En el desarrollo futuro de la farmacología, uno de los objetivos será, precisamente, el obtener drogas citotóxicas, cada vez más selectivas, de una parte, para los diferentes tipos de neoplasias y por otra, para las diferentes células que intervinieron en el proceso inmunológico.

Las drogas inmunosupresoras (Tabla II) que son las mismas hasta hoy se han utilizado como antineoplásicas, pueden dividirse en cuatro grupos principales: a) antimetabolitos, b) substancias alquilantes, c) hormonas y d) un grupo heterogéneo de varias substancias.

a) Los antimetabolitos pertenecen básicamente, a cuatro clases de drogas que interfieren o antagonizan el metabolismo de: el ácido fólico, la adenina o la purina, el uracilo o la pirimidina y la glutamina. En todos estos casos se interfieren, sobre todo, la producción de ácidos ribonucleicos y, consiguiéndose, la síntesis de proteínas. Este proceso de síntesis aunque se realiza también en toda célula diferenciada, es mucho más activo en la célula en mitosis y por lo mismo estas drogas son mucho más selectivas para inhibir a las células en proceso carioquinético; precisamente por esta razón se han utilizado con limitado éxito en el tratamiento de ciertos tipos de neoplasias y entre sus principales inconvenientes están los relacionados con la inhibición de células o tejidos en reproducción normal y constante, como sucede con el tejido mieloide de la médula ósea, la capa generatriz de la piel, etc.

b) Las drogas alquilantes son capaces de reaccionar con muchas substancias químicas, reemplazando un hidrógeno en dichas substancias por uno de sus propios grupos metílicos y convirtiendo a tales substancias, en compuestos químicamente inoperantes dentro del metabolismo celular. Pueden reaccionar con grupos aminados, grupos carboxílicos, grupos fosfóricos, etc. y por consiguiente su acción química es muy variada dentro del citoplasma y el núcleo celulares. Por acción directa sobre los ácidos ribonucleicos o indirectamente, por acción sobre las enzimas relacionadas con la síntesis nucleica, las mostazas nitrogenadas alteran profundamente al metabolismo de los ácidos nucleicos e interfieren el proceso carioquinético y en este sentido, aunque por un mecanismo bioquímico distinto, actúan en forma parecida a la de las substancias antimetabólicas.

c) Las hormonas esteroidales, tanto las naturales como las sintéticas, actúan también a través de varios mecanismos bioquímicos, pero en lo que se refiere al proceso de la primera respuesta inmunitaria, su acción inmunosupresora está relacionada con la inhibición de la síntesis proteica de los linfocitos.
T A B L A III

ANTIMETABOLITOS
PRINCIPALES EFECTOS PRODUCIDOS POR LAS DROGAS INMUNOSUPRESORAS

1. Inhiben síntesis de ácidos nucleicos y de proteínas.
2. Afectan más a plasmocitos y síntesis de Inmuno globulinas.
3. 6-MP, según dosis progresiva inhibe: a) Maduración del linfocito pequeño (alergia tardía); b) Síntesis de IgG; y, c) Síntesis del IgM.
4. 6-MP, es poco selectiva; azatiopina y corticoides son más selectivos, no inhiben proliferación de células HeLa, Hep 2 y LLCmK2.
5. 6-MP y metotrexate, inducen tolerancia inmunológica.
6. 6-MP hace disminuir el número de monocitos en sitios de inflamación.

ALQUILANTES

1. Inhiben replicación de cadenas de ADN
2. Aunque por otros mecanismos bioquímicos que los antimetabolitos, inhiben síntesis de ácidos nucleicos y proteínas.
3. En general, efectos semejantes a antimetabolitos.
4. Ciclofosfamida induce también tolerancia inmunológica.

CORTICOSTEROIDES

1. Inhiben actividad del timo.
2. Inhiben proliferación del tejido linfóideo y mielocítico.
3. Inhiben des diferenciación de los linfocitos.
4. Producen efecto linfocitólítico en algunos animales (no se ha demostrado en el hombre).
5. Inhiben adherividad de los granulocitos a las paredes vasculares.
6. Probablemente estabilizan la membrana de los lisosomas (macrófagos), inhiben el paso de los complejos antígeno-anticuerpo a través de la membrana glomerular.
7. No inhiben la mitosis de las células HeLa, Hep2 y LLCmK2.

SUEROS ANTILINFOCITICOS

1. No existe un suero standard.
2. Algunos sueros producen linfopenia, otros no.
3. In-vitro inducen des diferenciación linfocítica.
4. Inhiben más rechazo de tejido y alergia tardía y poco la síntesis de inmunoglobulinas.
5. Pueden estimular la replicación de virus y facilitar la oncogénesis viral.
d) En cuanto al cuarto grupo de drogas inmunosupresoras, los mecanismos de acción varían mucho, según su naturaleza química, pero en la mayoría de los casos, también interfieren el metabolismo de los ácidos nucleicos y la carióquinesis. En la tabla III se resumen los mecanismos de acción y principales efectos producidos por las drogas inmunosupresoras más importantes.

Es interesante hacer resaltar que con la 6-Mercaptopurina (6-MP), así como con algunas otras drogas, se ha observado cierta selectividad de inhibición: con las dosis más bajas se inhibe la producción y maduración del linfocito pequeño y por consiguiente se inhiben los fenómenos de inmunogirosión correspondientes al tipo tardío de alergia; con dosis más altas se inhibe también la maduración de las células plasmáticas y se bloquea total o parcialmente la producción de la IgG y por fin, con dosis más altas todavía, se inhibe además la producción de la IgM, cosa que implicaría la inhibición de la síntesis proteica en los neolinfoblastos. Experimentalmente se ha encontrado que cuando la 6-MP se administra después del cuarto día de la inyección del antígeno, es decir, después de que ya se ha formado el retículo endoplasmático, la síntesis de la IgG se inhibe muy escasamente²⁻¹⁰. En cuanto a selectividad sobre otros grupos celulares, se ha observado que la 6-MP es poco selectiva e inhibe la mayoría de células en reproducción, cualquiera que sea el tejido. En cambio la azatiopirina y los corticoesteroides no inhiben las células de cultivos, conocidas con las siglas: HeLa, Hep2 y LLCmK2.

Otro efecto de gran interés es el relacionado con la producción de inmunotolerancia, es decir, un estado biológico en el cual la presencia del antígeno no va seguida de la respuesta inmunitaria, este fenómeno confirma, parcialmente, la teoría clonal de Burnett y Medawar¹¹ de la inmunidad. Si inmediatamente antes o simultáneamente con la administración del antígeno se administra 6-MP, metotrexato o ciclofosamida no sólo que se impide, en este momento, la formación del anticuerpo correspondiente sino que si después de algunos días o semanas se vuelve a inyectar el mismo antígeno, tampoco se producen los anticuerpos, en tanto que si se administra otro antígeno en este segundo momento, se produce la reacción inmunitaria, con la síntesis del anticuerpo específico¹²⁻¹³. En conejos, por ejemplo, con 6-MP se ha conseguido²⁻¹⁴ crear el estado de tolerancia inmunitaria frente a la albúmina bovina y con ciclofosamida, en ratas¹⁵⁻¹⁶, se ha logrado tolerancia inmunitaria frente a lisados de tejidos, especialmente de cerebro y tiroides, impidiendo la producción de cuadros patológicos del tipo de "auto inmunidad"; encefalomielitis y tiroïditis, respectivamente. Así mismo en ratones que por una anomalía genética desarrollan, al llegar a una específica edad, enfermedades autoinmunes, como los ratones la cepa (NZB x NZW) Fl, la ciclofosfamida ha impedido la producción de la enfermedad autoinmune¹⁷.

Los sueros antilinfocíticos (por ahora
hay que hablar en plural, pues no existe un solo tipo de suero, preparado según una técnica standard), producen efectos que, parcialmente, varían según el tipo de cada uno de ellos; pero en general, actúan más selectivamente inhibiendo la producción del linfocito pequeño y por consiguiente son más efectivos para suprimir los fenómenos de alergia tardía y entre ellos el de rechazo de injertos18-19.

2. La segunda respuesta

A) Immunoprotección. En el caso de la immunoprotección (Tabla I), al penetrar el antígeno por segunda vez en la intimidad del organismo, es bloqueado por alguno de los anticuerpos circulantes, en particular por la IgG. Este complejo antígeno-anticuerpo es sometido a fagocitosis por parte de los macrófagos y otros elementos dependientes del tejido reticuloendotelial. Silenciosamente tanto antígeno como anticuerpo son metabolizados y de haberse tratado de un agente biológico del medio ambiente el organismo humano, se ha salvado de una posible infección, sin sufrir ninguna alteración patológica.

B) Imunooagresión. Lo que en breves palabras hemos escrito anteriormente, no sucede siempre; en otros casos, la segunda respuesta se acompaña de graves trastornos para el organismo huésped a tal punto que puede correr peligro su vida misma. Los fenómenos de imunooagresión pueden calificarse según diferentes criterios: el aspecto clínico, la influencia genética, etc. Co-

mo se indicó en la Tabla I, de acuerdo al mecanismo fisiopatológico y siguiendo el criterio de Schwartz2, tales tipos de agresión son los siguientes:

a. Reacción de tipo inmediato (alergia inmediata). El anticuerpo que, específicamente, interviene en este tipo de reacción es la llamada "reagina" y que hoy se la identifica29 como la IgE que es una immunoglobulina que tiene la tendencia a adherirse o "fijarse" a diferentes células y tejidos. Las células a las cuales se fijan de preferencia estos anticuerpos son, de una parte los mastocitos y basófilos y de otra los polimorfonucleares. Al parecer, el anticuerpo (IgE) se fija a la superficie de las células gracias a su segmento Fe. Cuando ingresa por segunda vez el antígeno, éste reacciona con la immunoglobulina E, uniéndose por el extremo libre, (fig. 3), por el segmento Fab y como consecuencia se inicia una verdadera reacción en cadena a través de la membrana celular que determina la degranulación del mastocito y la liberación, hacia el torrente circulatorio, de sustancias farmacodinámicamente activas y potentes como la histamina, la serotonina y la bradicinina5. Estas sustancias actúan luego sobre células efectoras, en particular la fibra lisa y la célula exocrina. Este aspecto de las reacciones alérgicas y anafilácticas es por demás conocido y no insistiremos en mayores detalles. En los años recientes se ha descubierto que otra de las sustancias que se libera es una lipoproteína, llamada substancia de reacción lenta (SRS), la cual se liberaría de los polimorfonucleares21. También
esta substancia actúa sobre la fibra lisa
tanto de las vísceras como de los vasos
sanguíneos. Sobre la fibra lisa de las
vísceras, provoca una contracción lenta
y de allí su nombre.

b. Reacción de tipo tardío (Alergia
tardía). En este tipo de reacción, al pa-
recer, no intervienen de modo prefe-
rente ninguna de las clases de anticuer-
pos sino el linfocito pequeño "sensibi-
lizado", es decir, que se ha generado
despues de la estimulación antigénica.
Cuando este linfocito entra en contacto
con el antígeno produce una pri-
mera reacción de tipo inflamatorio, con
producción de quimiotoxinas que facili-
tan la penetración, a esta zona, de los
monocitos (fig. 4). Según parece tam-
bién producen otra substancia química
provisionalmente denominada "factor
inhibitorio de la movilidad monocítica"
(FIMM), que determina el que los mo-
nocitos o macrófagos que confluyen a
la zona de reacción, quedan inmovili-
zados y contribuyan a aumentar la in-
flamación, mediante la liberación de
substancias vasoactivas como la misma
histamina. Todo este proceso requiere
de un período entre 24 y 48 horas, por
lo que ha sido denominada hipersensi-
bilidad tardía, para diferenciárlo de la
reacción alérgica que se produce en
forma inmediata a la inyección o admi-
nistración del antígeno, como sucede,
por ejemplo, en la segunda administra-
ción de una proteína heteróloga al co-
bayo, por vía intravenosa, en cuyo ca-
só después de uno o dos minutos de la
administración se produce el shock
mortal.

Es la reacción tardía, tan conocida
desde la época de Mantoux, la que per-
mita el diagnóstico del estado de sensi-
bilización en ciertas micosis, parasito-
HiperSENSIBILIDAD TARDIA
(Alergia tardía, rechazo celular de injertos)

Célula responsible Reacción antigénica Primera liberación química Infiltra-
 Primera ción mononuclear Segunda liberación química

tardía

Histamina y otras subst. vasactivas
Inflamación tardía (A las 24 - 48 hs)

Linfocito pequeño "sensibili-
"zado"

Antígeno

(Factor inhibi-
 bitorio de la movilidad de monocitos)

FIGURA 4
INMUNOAGRESION DE TIPO INMEDIATO (alergia inmediata).— El anticuerpo de este tipo de reacción interviene el linfocito pequeño «sensibilizado», probablemente con inmunoglobulinas adsorbidas o combinadas a su membrana. Al penetrar por segunda vez el antígeno, éste reacciona a nivel de la membrana del linfocito, el cual libera el factor inhibitorio de la movilidad de los monocitos (FIMM), que por un quimiotactismo especial atrae monocitos, los mismos que quedan inmovilizados en la zona de reacción y liberan más tarde sustancias vasoactivas produciéndose la inflamación tardía entre 24 y 48 horas después.

sis e infecciones como la tuberculosis, es la que predomina en el rechazo de injertos tisulares. Si bien es cierto que en el rechazo tisular pueden intervenir también anticuerpos, lo característico es la infiltración linfocitaria, acompañada de monocitos que se inmovilizan hasta que puede producirse el secuestro.

c. Reacción inmunosérica. En la reacción inmunosérica participan en primer lugar la IgG y secundariamente la IgM. En la primera fase, todo sucede como en el caso de la inmunoprotección, es decir reaccionan antígenos con anticuerpos y se forman complejos, pero en la reacción inmunosérica, los complejos resultan bastante solubles y con ciertas otras características fisioquímicas que hace que sean muy poco atacados por los macrófagos y tienden a sedimentarse o fijarse en ciertas membranas celulares, en particular en la membrana vesicular de los glomérulos renales24-25, por donde hay una activa circulación sanguínea. Se activa entonces el sistema del complemento y cuando se liberan las sustancias quimiotácticas: C'5, C'6, C'7, son atraídas al sitio de la lesión los polimorfonucleares los cuales comienzan a fagocitar estos complejos pero al propio tiempo se desintegran sus lisosomas, se liberan las enzimas líticas que digieren y desintegran la membrana vesicular, provocando la glomerulonefritis (fig. 5).

Algo semejante sucede también en otros tejidos, como en la substancia colágena, ya sea que el anticuerpo se combine directamente con la substancia colágena o sea el complejo antígeno-anticuerpo el que afecte a dicho tejido. En el caso del lupus los anticuerpos son anti-ADN.
REACCIÓN INMUNOSERÍCA (COMPLEJO ANTÍGENO-ANTICUERPO)
(Glomerulonefritis, lupus, colágenopatías)

<table>
<thead>
<tr>
<th>Immunoglobulinas</th>
<th>Reacción antigénica</th>
<th>Depósito o fijación celular</th>
<th>Primera liberación química</th>
<th>Fagocitosis</th>
<th>Segunda liberación química</th>
<th>Reacción tisular</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgG</td>
<td></td>
<td>Membrana glomerular etc.</td>
<td>Factor quimiotáctico del complemen-</td>
<td></td>
<td>Glomerulonefritis</td>
<td></td>
</tr>
<tr>
<td>IgM</td>
<td></td>
<td></td>
<td>to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(complejos solubles)</td>
<td>Activación complemento</td>
<td></td>
<td>(C15, C16, C17)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURA 5

INMUNOAGRESIÓN POR COMPLEJOS ANTÍGENO-ANTICUERPO (reacción inmunoseríca).— Intervienen especialmente la IgG y secundariamente la IgM, que reaccionan con el respetivo antígeno, pero en vez de formar grandes y pesados complejos antígeno-anticuerpo, como en la reacción inmunoprotectiva, en este caso se forman complejos de poco peso molecular, solubles que circulan por la sangre y llegan hasta la membrana glomerular del riñón en donde activan varios componentes del complemento, que atraen polimorfonucleares, los mismos que fagocitan a dichos complejos pero al propio tiempo liberan enzimas proteolíticas que desintegran la membrana vasal, provocando glomerulonefritis. Algo semejante sucedería también a nivel de la sustancia colágena.

Esta reacción sérica parece que se produce con relativa frecuencia en muchas infecciones, particularmente estreptocócicas, pero en tan escasa magnitud que los pequeños y localizados inflamatorios no alteran el estado de salud general del organismo. En otros casos la reacción es tan intensa o se produce repetidamente a tal punto que constituye un verdadero estado patológico.

d. **Immunocitólisis.** En esta reacción interviene principalmente la IgG y, en algunos casos, la reacción puede estar a cargo de criohemaglutininas que corresponden a la IgM. La inmunoglobulina que interviene en esta reacción, debe tener una constitución química bastante especial, pues tiene la tendencia a fijarse en ciertas células, especialmente en las células hemáticas y entre éstas, de preferencia, en los eritrocitos. Además según se desprende de ciertas experiencias, esta fijación a la membrana eritrocitaria se realizaría por el segmento Fab (fig. 6). También pueden adherirse a los leucocitos y a los trombocitos. Por el extremo libre, que sería el segmento Fc, esta inmunoglobulina, se une a receptores químicos especiales de la membrana de los monocitos y por consiguiente el eritrocito cubierto de anticuerpos atrae a su superficie a los monocitos los mismos que le rodean, tomando el conjunto un aspecto de roseta. Los monocitos alteran luego la pared eritrocitaria culminando en la desintegración de este elemento figurado de sangre, con la consiguiente anemia de tipo hemolítico. Por mecanismo semejante puede producirse también leucopenia y trombocitopenia. Este tipo de inmunooagresión se ha observado como efecto indeseable de ciertas drogas como la penicilina y algunos analgésicos que pueden inducir la ane-
INMONOCITOLISIS
(Anemia hemolítica, leucopenia, trombocitopenia)

<table>
<thead>
<tr>
<th>Immunoglobulinas</th>
<th>Células fijadoras</th>
<th>Atracción selectiva</th>
<th>Lisis celular</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crfhemaglutinina (IgM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eritrocitos</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leucocitos</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trombocitos</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monocito</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURA 6
INMUNOAGRESIÓN CITOLÍTICA.— El anticuerpo principal de esta reacción es la IgG y ocasionalmente crfhemaglutininas (IgM), las mismas que se fijan a los elementos figurados de la sangre, por su segmento Fab. El segmento Fc de estas inmunoglobulinas reacciona con receptores químicos especiales de la membrana de los monocitos, los cuales fagocitan y destruyen a los hematies, las plaquetas, etc. produciendo anemia hemolítica, trombocitopenia, etc.

...mia hemolítica a través del mecanismo descrito.

e. Drogas que inhiben la inmunoreacción. El conocimiento de los mecanismos fisiopatológicos antes descritos es bastante reciente y la farmacología aún no ha hecho una mayor contribución, mediante drogas que, selectivamente inhiben, en algún momento, la secuencia de fenómenos, antes de que se produzcan las alteraciones patológicas.

El grupo de los anti-histamínicos, ha sido largamente estudiado, son sustancias que bloquean selectivamente los receptores histamínicos en las células efectoras y por consiguiente inhiben los efectos de la histamina. En los últimos años se han sintetizado también algunas sustancias que tienen efectos antiserotonínicos. En ambos casos se trata de una intervención farmacológica en el último momento de la reacción inmune y se considera que es posible intervenir en alguno de sus estudios anteriores.

Hay el grupo de drogas denominadas anti-inflamatorias, entre las cuales están los analgésicos derivados del ácido salicílico, los derivados pirazolónicos, los derivados indólicos, etc. El efecto anti-inflamatorio del ácido salicílico, (sus sales y derivados se descubrió que hace muchísimos años y en forma empírica se han utilizado numerosas drogas analgésico-anti-inflamatorias. Se ha encontrado que estas substancias, a más del poder analgésico, son capaces también de inhibir la síntesis proteica en los linfocitos, aún en los linfocitos maduros, fenómeno que es proporcional al efecto anti-inflamatorio. Estas substancias producen in vitro inhibición de la fosforilización oxidativa que es la reacción que provee a la célula de energía para la síntesis proteica. Las drogas anti-inflamatorias, son más efectivas en el tratamiento de las afeciones reumatoideas.

Recientemente se ha encontrado que algunas substancias bloquean, parcialmente, la liberación de la substancia
SRS, entre éstas están algunas de las mostazas nitrogenadas, un antiparasitario, la dietilcarbamazid (Hetrazán27-28), el cromoglicato sódico (Intal), el cual también inhibe algo la liberación histamínica29.

En la Tabla IV se resumen los mecanismos de acción de estas drogas. También el grupo de los corticoesteroides tiene propiedades antiinflamatorias y como se indicó en la Tabla III pueden interferir la inmunorespuesta e inmunonagresión en diferentes fases de su desarrollo.

Tabla IV

DROGAS QUE INHIBEN LA INMUNO-REACCION

DROGAS ANTI-INFLAMATORIAS (SALICILATOS, PIRAZOLONICOS, INDOLICOS)

1. Inhiben la fosforilización oxidativa que previene energía para síntesis proteica.
2. Inhiben síntesis proteica de linfocitos.
3. Inhibición es proporcional a la dosis.
4. Más activas en enfermedades reumáticas.

BLOQUEANTES LIBERACION DE SRS

1. Mostazas nitrogenadas inhiben a polimorfonucleares y bloquean parcialmente reacciones dependientes de la SRS.
2. La dietilcarbamazina (Hetrazán) inhibe, en rata, liberación de SRS.
3. El cromoglicato sódico (Intal) inhibe liberación de SRS e histamina.

RESUMEN

La respuesta antigénica en los fenómenos de inmunidad es útil y por varios procedimientos se trata de que sea intensa y duradera. No obstante, en otros fenómenos, en particular en las enfermedades "autoinmunes" y en el trasplante de tejidos y órganos, la respuesta antigénica es inconveniente y se necesita suprimirla.

La respuesta primaria ante la presencia de un antígeno comprende varias fases: a) fagocitosis del antígeno por parte del macrófago; b) transferencia de un mensaje químico específico del macrófago al linfocito; c) transformación blástica del linfocito; d) proliferación linfoblástica y producción de linfocitos pequeños inmunológicamente competentes y de plasmocitos; e) síntesis de las inmunoglobulinas por los plasmocitos y otras células competentes.

Existen varias posibilidades de ataque medicamentosos dirigido a suprimir esta compleja respuesta inmunitaria. El suero antilinfocítico inhibe especialmente el rechazo de tejidos y la llamada hipersensibilidad tardía, fenómenos dependientes del linfocito pequeño. Las drogas inmunosupresoras, como la mercaptopurina, el metotrexate, la
ciclofosfamida y la azatioprina, en cambio, inhiben más selectivamente, la síntesis de anticuerpos. Estas drogas son mucho más efectivas cuando se administran en forma previa al antígeno o durante los primeros días del período de incubación que cuando la síntesis de anticuerpos es intensa. El mecanismo bioquímico de acción difiere según cada droga.

La segunda respuesta, es decir la que se produce cuando, después del período de incubación, entra por segunda vez el antígeno, puede consistir en un fenómeno de inmunoprotección, o en uno de inmunogresión, con trastornos patológicos.

Desde el punto de vista fisiopatológico se distinguen cuatro tipos de inmunogresión: el inmediato (alergia inmediata), el tardío (alergia tardía), la reacción inmunosérlica y la reacción inmunocitolítica. Aunque se conoce ya algo sobre el mecanismo íntimo de estos fenómenos, todavía es muy poco lo que se ha hecho desde el punto de vista farmacológico. Se vislumbra la posibilidad de atacar farmacológicamente en algunas fases a lo largo de estas reacciones.

REFERENCIAS BIBLIOGRÁFICAS

