e-ISSN 2477-9148
73
Identication of Mi-1 homologs in Solanum species
Carrera et al.
REVISTA ECUATORIANA DE MEDICINA Y CIENCIAS BIOLOGICAS
Volumen 39. No. 1, Mayo 2018
Identication of Mi-1 homologs in various Solanum species
Identicación de homólogos del gen Mi-1 en varias especias de Solanáceas
Saskya Estefany Carrera Pacheco
1
, María Gabriela Chacón Acosta
2
, María José Vallejo
López
2
, Francisco Javier Jarrín Cornejo
3
, Ricardo Francisco Oliva Pérez
4
y Karina Isabel
Proaño Tuma
2
*
The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Australia
2
Universidad de las Fuerzas Armadas ESPE, Departamento de Ciencias de la Vida, Laboratorio de Biotecnología
Vegetal, Av. General Rumiñahui s/n, Sangolquí, Ecuador, P.O.BOX 171-5-231B
3
Fundacion Vitroplant, Quintiliano Sánchez N15-113 y Solano, Quito, Ecuador
4
International Rice Research Institute (IRRI), Genetics and Biotechnology, Pili Drive, UPLB, Los Baños, 4031 La-
guna, Filipinas
*Corresponding author e-mail: kiproanio@espe.edu.ec
doi.org/10.26807/remcb.v39i1.566
Recibido 6-02-2018 ; Aceptado 21-05-2018
ABSTRACT.- In Ecuador, several solanaceous crops, including naranjilla (Solanum quitoense), are attacked by the
nematode Meloidogyne sp. Resistant cultivars are not available, and there is a need to identify potential sources of
resistance that can be incorporated into breeding programs. The Mi-1 gene from S. peruvianum is known to confer
resistance to Meloidogyne in tomato (S. lycopersicum). In this study, 42 plant accessions of wild and cultivated Sola-
num 
recombination. The Mi-1

tomato Mi-1 protein. The Mi-1 locus was highly polymorphic; most polymorphisms tend to accumulate in the NBS
rather than in the LRR region. Genetic recombination was detected among the tomato and potato related sequences,


KEYWORDS: homologs, Meloidogyne, Mi-1 gene, resistance, Solanum.
RESUMEN.- En el Ecuador, varios cultivos de solanáceas –incluyendo la naranjilla (Solanum quitoense)– son ata-
cados por nematodos del género Meloidogyne

El gen Mi-1 de S. peruvianum es conocido por la resistencia a MeloidogyneS. lycopersi-
cum). En este estudio, 42 accesiones de plantas silvestres y cultivadas de especies de Solanum, fueron analizadas para
Mi-1


proteína Mi-1 del tomate.
El locus de Mi-1
-


PALABRAS CLAVES:Meloidogyne, Mi-1 gen, resistencia, Solanum.
Artículo científico
REMCB 39 (1): 73-84, 2018
74
INTRODUCTION
In the highland region of Ecuador, large areas of land are
cultivated with local economically important Solanum
crops such as the potato (S. tuberosum and S. phureja),
tomato (S. lycopersicum), tree tomato (S. betaceum),
pear melon (S. muricatum), and naranjilla (S. quitoense).
In 2016, 3514 ha of tree tomato were planted which pro-
duced 28512 t (INEC, 2014). There is no current infor-
mation on naranjilla production, but the crop is cultivated
  
(INEC, 2000). In both crops, production has been cons-
trained, among other factors, by the attack of the root-
knot nematode (RKN) Meloidogyne sp. The nematode
restricts the plants’ absorption of nutrients and water up-
take from the soil, resulting in a reduction in yield and in
the useful life of crops (Trudgill, 1991). In naranjilla, for
instance, M. incognita is one the main diseases causing
  
nematode interacts with Fusarium oxisporum, and redu-


diseases was the principal cause ofornaranjilla produc-
tion collapse in Ecuador (Ochoa et al., 2008). In tree to-
mato plantations, M. incognita

life can be reduced by half (Revelo et al., 2003; Revelo
et al. ,2004). The nematode has traditionally been con-

the case of the naranjilla, by clearing primary forests to
introduce the crop in virgin soils (Vásquez et al., 2011).
Resistant cultivars, accepted by farmers, are not availa-
ble in both crops, and national breeding programs are
seeking new sources of resistance.
      
the ability of a plant to suppress its development or re-
production (Roberts, 2002), and is currently the most
      -
     -
tant cultivars have proven commercially successful in
the control of the most damaging Meloidogyne species
(Castagnone-Sereno 2002).
Plants have evolved several defense mechanisms against
a broad range of pathogens, including resistance genes
or R-genes. One of these genes is the tomato Mi-1 gene,
        
peruvianum, and then introduced into cultivated tomato
using embryo rescue (Smith, 1944). Mi-1 confers resis-
tance to three RKNs (M. arenaria, M. incognita and M.
javanica) (Dropkin, 1969a), to the potato aphid Macro-

Bemisia tabaci (Nombela et al., 2003). The use of resis-
tant tomato cultivars with this gene has proven highly
-
tant cultivars yield normally on infested land (Roberts
and May, 1986). Nowadays, all commercially available
tomato cultivars resistant to RKNs carry the Mi-1 gene
and it is the only commercially available source of resis-
tance to these nematodes in the crop. Mi-1-

tomato cultivar development (Jablonska et al., 2006), but
new sources of resistance against nematodes, which can
be incorporated in breeding programs, are required.
The Mi-1 gene encodes a 1257 amino acid protein and
         -
longs to a major class of plant R-genes (NBS-LRR) that
encode nucleotide binding sites and leucin-rich repeats
(Kaloshian et al., 1998; Milligan, 1998), and a putative
coiled-coil domain preceding the NBS. NBS-LRR pro-
teins mediate pathogen recognition and initiate defense
signaling that leads to host resistance (Belkhadir et al.,
2004). In plant R proteins, the NBS is part of a larger,
      
acids (Leipe et al., 2004), whereas the LRR domain is
generally the most variable region among closely related
R genes (Bergelson 2001).
Mi-1 is located in the short arm of chromosome 6 of the
tomato (Kaloshian et al., 1998). The short arm of chro-
mosome 6 in various Solanum species is an important
-
     
In the Mi locus, three genes, Mi-1.1, Mi-1.2, and Mi-1.3
Mi-1.2 gene is able to confer
resistance to RKNs (Milligan, 1998; Rossi et al., 1998).
This gene will henceforth be referred to as Mi-1 in the
        
the vicinity of the Mi-1 in S. lycopersicum and S. pe-
ruvianum
some Mi homologs considered pseudogenes, the identity
of the DNA sequences for all Mi-1 -
   
2007)
In tomato, the function of Mi-1 and of other RKN R-ge-
nes is lost at high temperature (Ammiraju et al., 2003).
For instance, Mi-1
below 28 °C (Holtzmann 1965; Dropkin 1969b). Howe-
ver, the Mi-9 gene from S. arcanum, a homolog of Mi-1
and localized in the same chromosomal interval as Mi-1,
confers heat-stable resistance to RKNs at 25 °C and 32
°C (Ammiraju et al., 2003; Jablonska et al., 2006). There
are also some Mi homologs discovered in chromosome
12 that inhibit reproduction of virulent nematode isola-
tes and maintain a phenotypic resistance response when
soil temperatures are above 28 °C (e.g. Mi-3 and Mi-5)
(Jablonska et al., 2006).v
Identication of Mi-1 homologs in Solanum species
Carrera et al.
REVISTA ECUATORIANA DE MEDICINA Y CIENCIAS BIOLOGICAS
75
In the potato, gene Rpi-blb2 of the wild potato
S. bulbocastanum, which confers broad resistance to
Phytophthora infestans, also maps to this region. This
gene is the nearest homolog to the gene Mi-1 known in
       
with the tomato gene Mi-1 (Vossen et al., 2005). Re-
sistance genes against M. incognita have not yet been
reported in tuber-bearing potatoes. However, 59 Mi-1
homologs were described and studied in the cultivated
potato species S. tuberosum ssp. tuberosum and S. phu-
reja (Sanchez-Puerta and Masuelli, 2011).
The principal aim of this study was to provide insight into
Mi-1 gene among di-
Solanum (Solanaceae)
in order to identify potential sources of resistance to Me-
loidogyne spp., particularly in naranjilla. To accomplish
this, 42 plant accessions of wild and cultivated Solanum
species were screened to determine its presence, diversi-

MATERIALS AND METHODS
Plant Material.-A total of 42 wild and cultivated
Solanum plant accessions, belonging to 25 species and
9 sections, were used in this study (Table 1). Solanum
seed were derived either from the Germplasm Bank of
the National Department of Phytogenetic Resources of
the National Autonomous Institute for Agricultural Re-
search (Departamento Nacional de Recursos Fitogenéti-

Agropecuarias - INIAP-DENAREF Quito) or the Inter-
national Potato Center - Quito (CIP-Quito). In the speci-

used. Seeds were germinated, and plants were grown in

of 10 cm.
Isolation of Nucleic Acids.- The genomic DNA of each
accession (Table 1) was obtained from 100 mg of fresh
leaves using the DNeasy Plant Mini Kit (Qiagen, Hilden,
Germany) protocol, diluted to 5 ng.µL

and stored at

leaves (13 plant accessions) and roots (only two acces-
sions) (Table 1) with the RNeasy Plant Mini Kit (Qiagen,
Hilden, Germany) and the TRIzol Reagent (Invitrogen,
Carlsbad, CA, USA) protocols, respectively. Quality and
quantity of DNA and RNA was checked using the Na-
noVue Spectrophotometer (General Electric Company,
  

PCR Analyses and Sequencing.- To search for Mi-1 ho-
molog sequences, primers corresponding to a conserved
       Mi-1 gene (Williamson
and Kumar, 2006) were designed. Primer sequences used
were 1F 5’-AACTCGAGAAAAGGAAGTGG-3’ and
1R 5’-CAAGATTGATCCTTTGTTAGACAC-3’. Reac-
-
ning 150 µM dNTPs, 1.5 mM MgCl
2
, 1 µM of each pri-
mer, 1 U Taq DNA polymerase and 1X DNA polymerase


and 72 °C, 10 min. Amplicons were analyzed by elec-

DNA Gel Stain (Invitrogen, Carlsbad, CA USA) in TBE

amplicons were recovered from gel using the QIAquick
-
ments obtained were then sequenced on both strands by
Macrogen S.A. (Seul, Corea).
Diversity Analysis.- Nucleotide sequences were
analyzed with the software BioEdit (Hall, 1999) and
translated into amino acid sequences. All sequences
were aligned using MUSCLE (Edgar, 2004). BlastN and
BlastP search strategies were conducted to identify DNA
and/or protein sequences homolog to Mi-1. Putative ho-
-


as true homologs. The same strategy was used to identi-
fy protein domains. The number of polymorphic amino
      
(Larkin et al., 2007).
Phylogenetic Analysis.- 

under the General Time Reversible model with parame-
ters for invariant sites and gamma-distributed rate hete-
rogeneity (Tamura et al., 2011). One hundred bootstrap
replicates were performed. The trees were visualized
using FigTree 1.4.3 (Rambaut, 2009). For these analyses,
11 Mi-1 gene homologs obtained from this study, plus 23
Mi-1 homologs belonging to S. tuberosum, S. lycopersi-
cum, S. peruvianum and S. phureja (Sanchez-Puerta and
Masuelli 2011) were used. Mi-1.2 from S. lycopersicum,
Rpi-blb2 from S. bulbocastanum (Vossen et al., 2005),
CaMi (Chen et al., 2007) and Me (Mao et al., 2008) from
Capsicum annuum were used for comparison.
Test of Gene Recombination.- Recombination events
of the Mi-1
using the Split Decomposition Method (Huson, 1998)
integrated in the Splits Tree4 program (Huson and Br-


Gene Expression analysis.-    
100mg of leaf (13 Solanum accessions) and leaf and root
REMCB 39 (1): 73-84, 2018
76
Table 1. Plant accessions belonging to different Solanum sections used for Mi-1 
analysis.
Code Species Section
Gene expression analysis
1
S45
S. mamosum
Acanthophora
2
A1
S. brevifolium
Anarrichomenum
3
A4
S. brevifolium
Anarrichomenum
4
A2
S. sodiroi
Anarrichomenum
5
S12
Solanum spp./tomatillo
Anarrichomenum
6
S17
S. caripense
Basarthum
7
J2
S. juglandifolium
Juglandifolia
8
J3
S. juglandifolium
Juglandifolia
9
J4
S. juglandifolium
Juglandifolia
10
S28
S. juglandifolium
Juglandifolia
11
S29
S. ochrantum
Juglandifolia
12
La15
S. gradiflorum
Lasiocarpa
13
La17
S. hirtum
Lasiocarpa
14
La16
S. hyporhodium
Lasiocarpa
15
S35
S. hyporhodium
Lasiocarpa
16
La21
S. pectinatum
Lasiocarpa
17
La22
S. pectinatum
Lasiocarpa
18
S37
S. pseudolulo
Lasiocarpa
19
S32
S. quitoense
Lasiocarpa
20
S33
S. quitoense
Lasiocarpa

21
S42
S. quitoense
Lasiocarpa
22
S34
S. sessiliflorum
Lasiocarpa
23
S38
S. vestisimum
Lasiocarpa
24
S36
Solanum sp.
Lasiocarpa
25
S19
Solanum spp. #61
Lasiocarpa
26
Ly23
S. habrochaites-like
Lycopersicon
27
Ly24
S. habrochaites
Lycopersicon
28
S57
S. lycopersicum (cv. Advantage)
Lycopersicon
29
S59
S. lycopersicum (cv. Flora Dade)
Lycopersicon

30
Ly10
S. peruvianum
Lycopersicon
31
S8
S. melongena
Melongena
32
S1
S. andreanum
Petota
33
P7
S. andreanum
Petota
34
S18
S. andreanum
Petota
35
S16
S. colombianum
Petota
36
P8
S. minutifoliolum
Petota
37
S3
S. paucijugum
Petota
38
S15
S. paucijugum
Petota
39
S14
S. solisii
Petota
40
T1
S. hispidum-like
Torva
41
T2
S. hispidum-like
Torva
42
T3
S. hispidum-like
Torva
root tissue
Identication of Mi-1 homologs in Solanum species
Carrera et al.
REVISTA ECUATORIANA DE MEDICINA Y CIENCIAS BIOLOGICAS
77
(2 accessions) tissue (Table 1) as stated above. RNA was
  -
-

The reaction was incubated for 15 min at room tempera-
ture and DNase I inactivation was performed using 1µL
of EDTA at 65 °C. Superscript III reverse transcriptase
Kit (Invitrogen, Carlsbad, CA USA) was used to perform

µL of oligo (dT)18 primer (0.5 µL.µL
-1
) and 1 µL dNTPs
(10 mM) were added and incubated for 5 minutes at 65
°C. It was immediately placed on ice for 1 minute and 4

µL of Superscript III reverse transcriptase (200 U.µL
-1
)


°C for 15 min. cDNA was stored at -20 °C until use. Qua-
   

and Mi-1 genes. GAPDH gene was used as a constitu-
     
were the same as cited above and amplicons were visua-

RESULTS AND DISCUSSION
Mi-1 Gene Homologs Are Present in Solanum Spe-
cies.-       
locus in the Solanum accessions was performed through

the Mi-1 tomato gene. This fragment spans amino acid
672-964 and includes the NBS (672 to 802) and the LRR
(803 to 964) regions. The 1 Kb amplicon was detected
          
was present in all the Anarrichomenum and wild potato
accessions (Petota) analysed, as well as in most acces-
sions of S. quitoense and its close relatives (Lasiocarpa
section). Four accessions showed an additional 0.9 Kb
fragment, and eight accessions did not show any ampli-

may correspond to uncharacterized paralogs or pseudo-
genes (Meyers, 1998; Noel, 1999), which seems to be
common among resistance genes. Pseudogenes may be
potential sources of variation (Meyers, 1998; Michelmo-
re and Meyers, 1998) and a rapid way to achieve new
        
evolve more quickly than the functional genes.
To verify if the amplicons obtained corresponded to Mi-1
homologs, the 1 Kb and 0.9 Kb fragments of 12 plant ac-
cessions were sequenced (Table 3); some of these acces-
sions were relevant for the national breeding programs.
   -
-
les or Mi-1 paralogs.
Table 2.- Description of the Mi-1       
Solanum analyzed in this study.
Section Plant accession
Presence of a
1 Kb
fragment
Presence of a
0.9 Kb fragment
None
Anarrichomenun
A1, A2, A4
S12
Basarthum
S17
Juglandifolia
J2, J3, S28, S29
J4
Acanthophora
S45
Melongena
S8
Petota
S1, S16, S18, P7, P8
S3, S15, S14
Torva
T3
T1,T2
Lycopersicon
S57, S59, Ly10
Ly23, Ly24
Lasiocarpa
S19, S32, S33, S34,
S35, S36, S37, S38,
S42, La17, La21, La22
La15, La16
REMCB 39 (1): 73-84, 2018
78
Multiple alignment of the nucleotide sequences with
        
      
indicated that most accessions were homozygous,
whereas two accessions (S17 of S. caripense and S18 of
S. andreanum) were heterozygous (Table 3).
The 16 allele sequences were translated into amino
acids. MUSCLE alignment showed that they encoded

S59 were the same (Table 3). Sequences from A1, S12-1,
and S18 presented premature stop codons or frameshift


A BlastP search against non-redundant protein sequen-
ces showed that all resultant amino acid sequences enco-

with the tomato Mi-1 protein that confers resistance to
Meloidogyne. The sequences analyzed corresponded to

part of the LRR region of these proteins.
Multiple amino acid sequence alignments between the

revealed a total of 117 polymorphic amino acid sites (Fi-
gure 1a). Most polymorphisms tended to accumulate in
the NBS region (57/131) rather than in the LRR region
      -
tionally, 71 gaps were found in the NBS region and 80
in the LRR region. These results show that, compared
to the NBS portion, the LRR portion tended to be less
divergent among the Mi-1 
Solanum accessions analyzed.
To investigate the phylogenetic relationships among the
Mi-1 loci, a phylogenetic tree was constructed using
the nucleotide sequences from 11 Solanum accessions
(Table 3), 23 Mi-1 homologs from S. tuberosum, S.
lycopersicum, S. peruvianum and S. phureja (Sanchez-
Puerta and Masuelli, 2011) and the Mi-1.2, Rpi-blb2,
CaMi and Me genes. The resulting tree topology is
shown in Figure 1b. Mi-1 sequences obtained from
Solanum sections are distributed all across the
tree and were closely related to the Mi-1 homologs. The

main cluster, the tomato cluster (TC), included the CaMi
gene from C. annuum (which is similar to the gene Mi-1
from tomato), the Mi-1.2 gene from S. lycopersicum,
one accession from S. peruvianum, two accessions
from S. lycopersicum, and various tomato Mi-1 related
sequences; one sequence from S. paucijugum and one
Table 3. Polymorphisms identified in the Mi-1 locus in 12 Solanum accessions.
Nucleotide sequence
Amino acid sequence
Section Species Code Allele 1 Allele 2 Allele 1 Allele 2
Anarrichomenum
S. brevifolium
A1
brf_na1
brf_pa1
a
S. spp/tomatillo
S12-1
tol1_na1
tol1_pa1
a
S. spp/tomatillo
S12-2
tol2_na1
tol2_pa1
Basarthum
S. caripense
S17
car_na1
car_na2
car_pa1
car_pa2
Lasiocarpa
S. sessiliflorum
S34
ses_na1
ses_pa1
S. hyporhodium
S35
hyp_na1
hyp_pa1
S. quitoense
S42
qui_na1
qui_pa1
Melongena
S. melongena
S8
mel_na1
mel_pa1
Lycopersicon
S. lycopersicum
(Advantage)
S57 adv_na1
adv/fda_pa
1
b
S. lycopersicum
(Flora Dade)
S59 fda_na1
adv/fda_pa
1
b
S. peruvianum
Ly10
per_na1
per_pa1
Petota
S. paucijugum
S15-1
paj1_na1
paj1_pa1
S. paucijugum
S15-2
paj2_na1
paj2_pa1
S. andreanum
S18
and_na1
and_na2
and_pa1
a
and_pa2
a
a
Sequences classified as pseudogenes.
b
Amino acid sequences were the same.
Identication of Mi-1 homologs in Solanum species
Carrera et al.
REVISTA ECUATORIANA DE MEDICINA Y CIENCIAS BIOLOGICAS
79
Fig. 1. Multiple sequence alignment of the NBS and LRR regions of the predicted Mi-1 homologs, and nucleotide phylogenetic tree. (a) Multiple
alignments of the predicted Mi-1 homologs amino acid sequences revealed a highly polymorphic family. (b) Phylogenetic analysis of nucleotide
sequences from 11 Mi-1 homologs found in this study (in blue), 23 Mi-1 homolog sequences from Solanum tuberosum (StMi1h genes), S. lyco-
persicum (Mi genes), S. phureja (SpMi1h) (Sanchez-Puerta & Williams, 2011) and S. peruvianum, and four sequences of the genes Mi-1.2 from S.
lycopersicum, Rpi-blb2 from S. bulbocastanum (van der Vossen et al., 2005), CaMi (Chen et al., 2007) and Me (Mao et al., 2008) from Capsicum
annuum, which were used for comparison. The tree was rooted with gen Me  

Lasiocarpa cluster.
REMCB 39 (1): 73-84, 2018
80
from “tomatillo” were closely related. The second main
cluster, the potato cluster (PC), included the Rpi-blb2
gene, S. tuberosum and S. phureja related sequences,
but surprisingly, S. caripense members were very close
related. The third cluster, the Lasiocarpa cluster (LC),
was poorly resolved and grouped three sequences
coming from plant accessions of section Lasiocarpa; S.
paucijugum was strongly related to this cluster. Each

Additionally, phylogenetic trees were constructed using
only the sequences of NBS and LRR domains to deter-
mine if these would maintain the same functional dis-
   -
pology (data not shown). Phylogenetic reconstruction of
Mi-1
loci with several members distributed among Solanum
species.
Fig. 2. Recombination analysis with the Split Decomposition Method (Huson, 1998). Trees show an interconnected network between some acce-
(a) Tomato clade.
 (b) Potato clade. Fifthteen accessions show evidence of recombiantion with

Identication of Mi-1 homologs in Solanum species
Carrera et al.
REVISTA ECUATORIANA DE MEDICINA Y CIENCIAS BIOLOGICAS
81
Mi-1 locus

Solanum.-
cation of Mi-1 homologs in sections as distant as Petota
or Lasiocarpa (Bohs, 2005), suggests that this gene is
highly conserved in the genus Solanum and that it may
have originated from an ancestral common gene which
        -
thogen recognition. The presence of polymorphic and
conserved regions among the sequences analyzed also
suggests that all Mi-1-like sequences evolved from a
common ancestor (Michelmore and Meyers, 1998).
The tree Mi-1 homologs detected in Lasiocarpa are
potential sources of resistance to Meloidogyne in the
naranjilla crop. The three Mi-1  
in Petota in the wild potatoes S. paucijugum and S.
andreanum are also potential sources of resistance to
the nematode. Previously, Mi-1 homologs have been
S. bulbocastanum (Vossen et al., 2005),
and the cultivated potatoes S. phureja and S. tuberosum
ssp. tuberosum (Sanchez-Puerta and Masuelli, 2011).
Further cloning and functional analysis of these genes
will assess its role in plant defense.
Recombination Contribution to Sequence Diversity in
the Mi-1 loci.- Investigation of Mi-1 loci recombination

Split Decomposition Method (Huson 1998). This method
        
clades to a phylogenetic tree topology. The higher the


for genetic recombination was found only within the

evidence was observed in the Lasiocarpa
According to the network diagrams, a group of 11, 15,
and zero sequences showed evidence of recombination
in the tomato, potato, and Lasiocarpa clusters,
respectively (Figure 2; Lasiocarpa cluster not shown).
This means that most of the Mi-1  
in this study generated by interallelic recombination and
not by mutation, and that recombination appears to be
the predominant mechanism in the generation of allelic
variation. Recombination was absent in the Lasiocarpa
sequences analyzed, implying that the Mi-1 homologs

target for cloning; and hence, potential sources of
resistance to Meloidogyne in the naranjilla crop.
Fig. 3.Mi-1 and GAPDH genes in non-infected leaves and roots of some Solanum accessions. (a)Mi-1 gene in
non-infected leaves and roots of the tomato plant S. lycopersicum (S59, Flora Dade); GAPDH-
genous control. Low DNA mass ladder (Invitrogen, Carlsbad, CA USA) was used to determine the molecular weight of fragments. (b) Transcript
accumulation of Mi-1Solanum accessions (non-infected leaves).
REMCB 39 (1): 73-84, 2018
82
Mi-1 Gene Homologs Are Constitutively Expressed
in Some Solanum Accessions.-
Mi-1 gene was evaluated in some plant accessions. For

roots and cDNA was synthesized. The GAPDH gene was

-
fected leaves and roots of tomato (S59) and naranjilla
      
both genes in both roots and leaves, suggesting the cons-
 Mi-1 gene (Figure 3a; results of
naranjilla not shown).
In a second assay, non-infected leaves of 13 accessions
of 12 species were evaluated. The Mi-1-
sed in only seven samples (Figure 3b) even though the
Mi-1 gene was present in all samples tested at genomic
level.

suggests that pathogen infection is not required to induce
Mi-1  -
Mi-1 homologs at the plant level
makes them good candidates for cloning.
CONCLUSIONS
The Mi-1 gene was detected in 34 wild and cultivated
plant accessions of Solanum, distributed in seven sec-
tions of the genus.
      
-

 Mi-1 amino acid
sequence.
The Mi-1 
Most polymorphism tends to accumulate in the NBS ra-
ther than in the LRR region.
Evidence of genetic recombination was detected in the
tomato and potato clusters, but not in the Lasiocarpa
Lasiocar-
pa are good targets for gene cloning, and hence potential
sources of resistance to Meloidogyne in naranjilla.
Mi-1 homologs in non-infected

These genes may also be considered as potential sources
of resistance against the nematode.
ACKNOWLEDGEMENTS
The authors would like to thank the National Department
of Phytogenetic Resources of the National Autonomous
Institute for Agricultural Research (INIAP-DENAREF
Quito) and the International Potato Center - Quito (CIP-
Quito), for providing the seeds from their Germplasm
Bank. This project was funded by Universidad de las
Fuerzas Armadas - ESPE, Sangolqui, Ecuador.
Quito (CIP-Quito), for providing the seeds from
their Germplasm Bank. This project was funded by
Universidad de las Fuerzas Armadas - ESPE, Sangolqui,
Ecuador.
REFERENCES
Ammiraju J, Veremis J, Huang X, Roberts P, Kaloshian I. 2003.
The heat-stable root-knot nematode resistance gene Mi-9 from
Lycopersicon peruvianum is localized on the short arm of chro-
mosome 6. Theor. Appl. Genet. 106:478–484. doi:10.1007/
s00122-002-1106-y.
        -
se resistance protein signaling: NBS–LRR proteins and their
partners. Curr. Opin. Plant Biol. 7:391–399. doi:10.1016/j.
pbi.2004.05.009.
Bergelson J. 2001. Evolutionary Dynamics of Plant R-Genes.
Science (80-. ). 292:2281–2285. doi:10.1126/science.1061337.
Bohs L. 2005. Major clades in Solanum based on ndhF sequen-
ce data. In: Keating, R.C., Hollowell, V.C., Croat TB, editor. A
-
mist. St. Louis, Missouri. p. 27–49.
Castagnone-Sereno P. 2002. Genetic variability of nematodes:
a threat to the durability of plant resistance genes? Euphytica
124:193–199. doi:10.1023/A:1015682500495.

root-knot nematode resistance gene from hot pepper (Capsium
annuum L.) confers nematode resistance in tomato. Plant Cell
Rep. 26:895–905. doi:10.1007/s00299-007-0304-0.
Dropkin VH. 1969a. Necrotic reaction of tomatoes and other
hosts resistant to Meloidogyne: reversal by temperature. Phyto-
pathology.
Dropkin VH. 1969b. Cellular Responses of Plants to Nematode
Infections. Annu. Rev. Phytopathol. 7:101–122. doi:10.1146/
annurev.py.07.090169.000533.
Edgar RC. 2004. MUSCLE: multiple sequence alignment
with high accuracy and high throughput. Nucleic Acids Res.
32:1792–1797. doi:10.1093/nar/gkh340.
 
2004. The nematode-resistance gene, Mi-1 , is associated with
an inverted chromosomal segment in susceptible compared to
Identication of Mi-1 homologs in Solanum species
Carrera et al.
REVISTA ECUATORIANA DE MEDICINA Y CIENCIAS BIOLOGICAS
83
resistant tomato. TAG Theor. Appl. Genet. 108:1635–1642.
doi:10.1007/s00122-004-1594-z.
Hall TA. 1999. BioEdit: a user-friendly biological sequence
alignment editor and analysis program for Windows 95/98/
NT. Nucleic Acids Symp. Ser. 41:95–98. doi:citeulike-arti-
cle-id:691774.
       -
ce of tomato to root-knot nematode (Meloidogyne incognita).
Phytopathology 55:990–992.
Huson DH. 1998. SplitsTree: analyzing and visualizing evo-
lutionary data. Bioinformatics 14:68–73. doi:10.1093/bioinfor-
matics/14.1.68.
Huson DH, Bryant D. 2006. Application of Phylogenetic Ne-
tworks in Evolutionary Studies. Mol. Biol. Evol. 23:254–267.
doi:10.1093/molbev/msj030.
INEC. 2000. III Censo Nacional Agropecuario. Resultados
Censo Nacional 2000.

continua. Quito-Ecuador.
Jablonska B, Ammiraju JSS, Bhattarai KK, Mantelin S, de
Ilarduya OM, Roberts PA, Kaloshian I. 2006. The Mi-9 Gene
from Solanum arcanum Conferring Heat-Stable Resistance to
Root-Knot Nematodes Is a Homolog of Mi-1. PLANT Physiol.
143:1044–1054. doi:10.1104/pp.106.089615.
    
Hogan P, Jesse T, Wijbrandi J, Simons G, Vos P, et al. 1998.
Genetic and physical localization of the root-knot nematode re-
sistance locus Mi in tomato. Mol. Gen. Genet. MGG 257:376–
385. doi:10.1007/s004380050660.
Larkin MA, Blackshields G, Brown NP, Chenna R, McGetti-
gan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez
R, et al. 2007. Clustal W and Clustal X version 2.0. Bioinfor-
matics 23:2947–2948. doi:10.1093/bioinformatics/btm404.
Leipe DD, Koonin E V., Aravind L. 2004. STAND, a Class
of P-Loop NTPases Including Animal and Plant Regulators
      -
chitectures, Unusual Phyletic Patterns, and Evolution by Ho-
rizontal Gene Transfer. J. Mol. Biol. 343:1–28. doi:10.1016/j.
jmb.2004.08.023.
      
LRR root-knot nematode resistance protein mRNA, complete
cds. Accesion FJ231739.1.
Meyers BC. 1998. The Major Resistance Gene Cluster in Lettu-
ce Is Highly Duplicated and Spans Several Megabases. PLANT
CELL ONLINE 10:1817–1832. doi:10.1105/tpc.10.11.1817.
Michelmore RW, Meyers BC. 1998. Clusters of Resistance
Genes in Plants Evolve by Divergent Selection and a Bir-
th-and-Death Process. Genome Res. 8:1113–1130. doi:10.1101/
gr.8.11.1113.
Milligan SB. 1998. The Root Knot Nematode Resistance Gene
Mi from Tomato Is a Member of the Leucine Zipper, Nucleotide
Binding, Leucine-Rich Repeat Family of Plant Genes. PLANT
CELL ONLINE 10:1307–1320. doi:10.1105/tpc.10.8.1307.
  -
 -
dopsis. PLANT CELL ONLINE 11:2099–2112. doi:10.1105/
tpc.11.11.2099.
Nombela G, Williamson VM, Muñiz M. 2003. The Root-
Knot Nematode Resistance Gene Mi-1.2 of Tomato Is Res-
      -
ci. Mol. Plant-Microbe Interact. 16:645–649. doi:10.1094/
MPMI.2003.16.7.645.
Ochoa J, Shiki L, Gallegos P, Viteri J, Ellis M, Williams R.
 
principales enfermedades de la naranjilla en Palora-Ecua-
       
CBO9781107415324.004.
Ota T, Nei M. 1994 May. Divergent evolution and evolution by
the birth-and-death process in the immunoglobulin VH gene
    
a040127.
Rambaut A. 2009. FigTree v1.4: Tree Figure Drawing Tool.
    
Fiallos J, Lima L, Guerra M. 2003. Manejo integrado de plagas


CBO9781107415324.004.
         
     -
       
CBO9781107415324.004.
Roberts PA. 2002. Concepts and consequences of resistance.
In: Plant resistance to parasitic nematodes. Wallingford: CABI.
p. 23–41.
Roberts P a, May D. 1986. Meloidogyne incognita Resistance
Characteristics in Tomato Genotypes Developed for Proces-
sing. J. Nematol. 18:353–358.
REMCB 39 (1): 73-84, 2018
84
Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE,
Williamson VM. 1998. The nematode resistance gene Mi of
tomato confers resistance against the potato aphid. Proc. Natl.
Acad. Sci. 95:9750–9754. doi:10.1073/pnas.95.17.9750.
Sanchez-Puerta MV, Masuelli RW. 2011. Evolution of nemato-
de-resistant Mi-1 gene homologs in three species of Solanum.
Mol. Genet. Genomics 285:207–218. doi:10.1007/s00438-
010-0596-6.
Seah S, Telleen AC, Williamson VM. 2007. Introgressed and
       
-
change and diversifying selection among homologues. Theor.
Appl. Genet. 114:1289–1302. doi:10.1007/s00122-007-0519-z.
Smith G. 1944. Embryo culture of a tomato species hybrid.
Proc. Amer. Soc. Hort. Sci. 44:413–416. [accessed 2018 Jan
4]. http://ci.nii.ac.jp/naid/10005766339/en/.
Stamatakis A, Hoover P, Rougemont J, Renner S. 2008. A Ra-
   
Biol. 57:758–771. doi:10.1080/10635150802429642.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar
S. 2011. MEGA5: Molecular Evolutionary Genetics Analy-
      
      
2739. doi:10.1093/molbev/msr121.
Trudgill DL. 1991. Resistance to and Tolerance of Plant Parasi-
tic Nematodes in Plants. Annu. Rev. Phytopathol. 29:167–192.
doi:10.1146/annurev.py.29.090191.001123.
Vásquez W, Viteri P, Martínez A, Villares M, Ayala G, Jácome
R. 2011. Naranjilla (Solanum quitoense Lam.): Tecnologías
para mejorar la productividad y calidad de la fruta.
Vossen EAG, Gros J, Sikkema A, Muskens M, Wouters D,
Wolters P, Pereira A, Allefs S. 2005. The Rpi-blb2 gene from
Solanum bulbocastanum is an Mi-1 gene homolog confe-
rring broad-spectrum late blight resistance in potato. Plant J.

Williamson V, Kumar A. 2006. Nematode resistance in
plants: the battle underground. Trends Genet. 22:396–403.
doi:10.1016/j.tig.2006.05.003.