Caracterización molecular de genes de resistencia a β-lactámicos en aislados bacterianos clínicos de la familia Enterobacteriaceae

Contenido principal del artículo

María Fernanda Yauri Bucheli

Resumen

Las infecciones desarrolladas por enterobacterias productoras de β-lactamasas de espectro extendido (BLEE) se relacionan a altas tasas de mortalidad y morbilidad en ambientes hospitalarios debido a su capacidad de hidrolizar antibióticos β-lactámicos. El objetivo de este estudio fue caracterizar los genes que confieren resistencia a β-lactámicos en enterobacterias obtenidas de un hospital de tercer nivel de la ciudad de Quito.  Se colectaron 153 enterobacterias y se identificó la especie con pruebas bioquímicas. El estudio seleccionó los aislados que presentaron producción de enzimas BLEE analizado por el método de sinergia de doble disco y el sistema automatizado VITEK 2 proporcionado por el centro hospitalario. De los 22 aislados seleccionados, 19 fueron identificados como Escherichia coli y 3 como Klebsiella oxytoca. La capacidad de los aislados de producir enzimas carbapanemasas se determinó con Triton Hodge Test (THT), demostrando que ningún aislado tenía esta capacidad. La identificación de genes de resistencia empleó reacción en cadena de la polimerasa y usó cebadores específicos de cada gen codificante de BLEE (blaCTX-M, blaTEM, blaSHV) y de enzimas carbapenemasas (blaKPC, blaIMP, blaVIM, blaNDM). La identificación de la variante alélica reportó que 11/22 aislados presentaron el gen blaCTX-M-15 y 4/22 el gen blaTEM-1. Ninguno aislado presentó genes de resistencia a carbapenems.


 


PALABRAS CLAVES: β-lactamasas de espectro extendido (BLEE), enterobacterias, genes de resistencia, resistencia bacteriana, variante alélica.

Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
1.
Yauri Bucheli MF. Caracterización molecular de genes de resistencia a β-lactámicos en aislados bacterianos clínicos de la familia Enterobacteriaceae. REMCB [Internet]. 23 de abril de 2021 [citado 16 de septiembre de 2021];42(1). Disponible en: http://remcb-puce.edu.ec/remcb/article/view/886
Sección
Notas científicas

Citas

Adeolu M, Alnajar S, Naushad S, Gupta R. 2016. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: Proposal for enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morgane. Int J Syst Evol Microbiol. 66(12):5575–5599.

Aggeliki P, Evgenia G, Georgia V, Vassiliki K, Theodoros P, Spyros P, Athanassios T. 2014. Test for Phenotypic Detection of ESBLs among Enterobacteriaceae Producing Various β-Lactamases. J Clin Microbiol. 52(5):1483–1489.

Alonso N, Miró E, Pascual V, Rivera A, Simó M, Garcia MC, Xercavins M, Morera MA, Espejo E, Gurguí M, et al. 2016. Molecular characterisation of acquired and overproduced chromosomal blaAmpC in Escherichia coli clinical isolates. Int J Antimicrob Agents. 47(1):62–68.

Ambler R., James B, Penley E. 1980. The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci. 289(1036):321–331.

Azargun R, Sadeghi M, Hossein M, Barhaghi S, Kafil H, Yeganeh F, Oskouee M, Ghotaslou R. 2018. The prevalence of plasmid-mediated quinolone resistance and ESBL-production in enterobacteriaceae isolated from urinary tract infections. Infect Drug Resist. 11:1007–1014.
Bajpai T, Pandey M, Varma M, Bhatambare G. 2017. Prevalence of TEM , SHV , and CTX ‑ M Beta ‑ Lactamase genes in the urinary isolates of a tertiary care hospital. Avicenna J Med. 7(1):12–16.

BD Diagnostics. 2009. Difco and BBL Manual Manual of Microbiological Culture Media 2nd Edition.

Bauer A, Kirby W, Sherris J, TurckM. 1966. Antibiotic Susceptibility Testing By A Standardized Single Disk Method. Am J Clin Pathol. 45(4):493–496.

Bevan E, Jones A, Hawkey P. 2017. Global epidemiology of CTX-M β-lactamases: Temporal and geographical shifts in genotype. J Antimicrob Chemother. 72(8):2145–2155.

Blanco V, Maya J, Correa A, Perenguez M, Muñoz J, Motoa G, Pallares C, Rosso F, Matta L, Celis Y, et al. 2016. Prevalencia y factores de riesgo para infecciones del tracto urinario de inicio en la comunidad causadas por Escherichia coli productor de betalactamasas de espectro extendido en Colombia. Enferm Infecc Microbiol Clin. 34(9):559–565.

Brolund A, Sandegren L. 2016. Characterization of ESBL disseminating plasmids. Infect Dis (Auckl). 48(1):18–25.

Cantón R, González-Alba J, Galán J. 2012. CTX-M enzymes: Origin and diffusion. Front Microbiol. 3(APR).

(CDC) Centers for Disease Control and Prevention. 2013. Vital Signs : Carbapenem-Resistant Enterobacteriaceae. MMWR Morb Mortal Wkly Rep. 62(9):165–170.

Chen L, Freeman J, Nicholson B, Keiger A, Lancaster S, Joyce M, Woods C, Cook E, Adcock L, Louis S, et al. 2014. Widespread dissemination of CTX-M-15 genotype extended-spectrum-β- lactamase-producing enterobacteriaceae among patients presenting to community hospitals in the southeastern United States. Antimicrob Agents Chemother. 58(2):1200–1202.

Cho H, Uehara T, Bernhardt T. 2014. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell. 159(6):1300–1311.

(CLSI) Clinical and Laboratory Standards Institute. 2018. Clinical and Laboratory Standards Institute antimicrobial susceptibility testing standards M02, M07, and M11.

Codjoe F, Donkor E. 2017. Carbapenem Resistance: A Review. Med Sci. 6(1):1.

Colquechagua F, Sevilla C, Gonzales E. 2015. Artículo Original de espectro extendido en muestras fecales en el enterobacteriaceae in fecal samples at the national. Rev Peru Med Exp Salud Publica. 32(1):26–32.

D’Andrea M, Arena F, Pallecchi L, Rossolini G. 2013. CTX-M-type β-lactamases: A successful story of antibiotic resistance. Int J Med Microbiol. 303(6–7):305–317.

Calva D, Toledo Z, Ochoa S, Arévalo A, Ausili A. 2016. Detection and molecular characterization of β-lactamase genes in clinical isolates of Gram-negative bacteria in Southern Ecuador. Brazilian J Infect Dis. 20(6):627–630.

Díaz V. 2017. Caracterización molecular de genes de resistencia a β-lactámicos en aislados clínicos de Escherichia coli provenientes de urocultivos y pruebas de inhibición con péptidos de Boana rosenbergi y Rana sp. [tesis]. [Quito (UIO)]: Pontificia Universidad Católica del Ecuador.

Ding H, Liu B, Gao Y, Zhong X, Duan S, Yuan L. 2018. Divergence of affinities, serotypes and virulence factor between CTX-M Escherichia coli and non-CTX-M producers. Poult Sci. 97(3):980–985.

Doi Y, Iovleva A, Bonomo RA. 2017. The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world. J Travel Med. 24(1):S44–S51.

Dortet L, Nordmann P, Poirel L. 2012. Association of the Emerging Carbapenemase NDM-1 with aBleomycin Resistance Protein inEnterobacteriaceaeandAcinetobacter baumannii. Antimicrobial agents and chemotherapy. 56(4):1693.

Elena A, Cejas D, Magariños F, Jewtuchowicz V, Facente A, Gutkind G, Di Conza J, Radice M. 2018. Spread of Clonally RelatedEscherichia coli Strains Harboringan IncA/C1 Plasmid Encoding IMP-8 and Its Recruitment intoan Unrelated MCR-1-Containing Isolate. Antimicrobial agents and chemotherapy. 62(6): 02414-02417.

Escandón K, Reyes S, Gutiérrez S, Villegas M. 2017. The epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti Infect Ther. 15(3):277–297.

Fadil Saedii A, Abdelraheim A, Abdel Aziz A, Swelam S. 2017. ESBL-Producing E.Coli and Klebsiella among Patients Treated at Minia University Hospitals. J Anc Dis Prev Remedies. 05(02).

Fatemeh F, Hamed A, Ali H, Hossein G, Latif G, Parastoo H. 2016. Antibiotic susceptibility patterns in CTX-M-15-producing Enterobacteraceae isolated from healthy Afghan refugees in Iran. African J Microbiol Res. 10(11):357–362.

Flores A, Walker J, Caparon M, Hultgren SJ. 2015. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 13(5):269–284.

Guillén, R. et al. 2016. Detección molecular de belactamasas de espectro extendido (BLEE) en enterobacterias aisladas en Asunción. Mem Inst Investig Cienc Salud. 14(1):8–16.

Guzmán-Blanco M, Labarca J, Villegas M, Gotuzzo E. 2014. Extended spectrum β-lactamase producers among nosocomial Enterobacteriaceae in Latin America. Brazilian J Infect Dis. 18(4):421–433.

INEC (2017). Programa Nacional de Estadística 2017-2021. Instituto Nacional de Estadística y Censos, Quito-Ecuador.

Iñiguez D, Zurita J, Alcocer I, Ortega D, Gómez AM, Maldonado L. 2012. Klebsiella pneumoniae productora de carbapenemasa tipo KPC-2: primer reporte en el Ecuador. Rev la Fac Ciencias Médicas. 37(1–2):40–43.

Kaluzna E, Zalas-Wiecek P, Gospodarek E. 2014. Comparison of detection methods for extended-spectrum beta-lactamases in Escherichia coli strains. Postepy Hig Med Dosw. 68(June):808–813.

Kang H, Wang L, Li Y, Lu Y, Fan W, Bi R, Qian H, Gu B. 2019. Dissemination of Multidrug-Resistant Shigella flexneri and Shigella sonnei with Class 1, Class 2, and Atypical Class 1 Integrons in China. Microb Drug Resist. 00(00):mdr.2018.0229.

Kelly A, Mathema B, Larson E. 2017. Carbapenem-resistant Enterobacteriaceae in the community: a scoping review. Int J Antimicrob Agents. 50(2):127–134.

López L. 2014. Papel del ambiente hospitalario y los equipamientos en la transmisión de las infecciones nosocomiales. Enferm Infecc Microbiol Clin. 32(7):459–464.

López D, Torres M, Prada C. 2016. Genes de resistencia en bacilos Gram negativos: Impacto en la salud pública en Colombia. Univ y Salud. 18(1):190.

Macy E, Contreras R. 2015. Adverse reactions associated with oral and parenteral use of cephalosporins: A retrospective population-based analysis. J Allergy Clin Immunol. 135(3):745-752.e5.

Mathers A, Peirano G, Pitout J. 2015. The role of epidemic resistance plasmids and international high- risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev. 28(3):565–591.

Morones I, Salgado T, Gonzaga T, Matamoros A, Terán J, Arteaga S, Castro L, Reyes A, López D, Meza D. 2016. Enterobacterias con betalactamasas de espectro extendido en hemocultivos y urocultivos. Med Interna Mex. 32(4):381–387.

Numanovic F, Hukic M, Delibegovic Z, Tihic N, Pasic S. 2013. Comparison of double disk synergy test , VITEK 2 and Check- MDR CT102 for detection of ESBL producing isolates. Acta Medica Acad 2013. 42(1):15–24.

O’Hara J, Hu F, Ahn C, Nelson J, Rivera J, Pasculle A, Doi Y. 2014. Molecular epidemiology of KPC-producing Escherichia coli: Occurrence of ST131-fimH30 subclone harboring pKpQIL-like IncFIIk plasmid. Antimicrob Agents Chemother. 58(7):4234–4237.

Oliveira M, Oliveira C, Gonçalves K, Santos M, Tardelli A, Nobre V. 2015. Enterobacteriaceae resistant to third generation cephalosporins upon hospital admission: Risk factors and clinical outcomes. Brazilian J Infect Dis. 19(3):239–245.

Organización Mundial de la Salud (OMS) [Internet]. 2018. Bangkok. Datos recientes revelan los altos niveles de resistencia a los antibióticos en todo el mundo; [updated 2018 Ene 30; cited 2020 Nov 20]. Disponible en: https://www.who.int/es/news/item/29-01-2018-high-levels-of-antibiotic-resistance-found-worldwide-new-data-shows

Pachay S. 2018. Las infecciones bacterianas y su resistencia a los antibióticos. Caso de estudio: Hospital Oncológico “Dr. Julio Villacreses Colmont Solca”, Portoviejo. Univ y Soc. 10(3):134–141.

Pasteran F, Gonzalez L, Albornoz E, Bahr G, Vila A, Corso A. 2016. Triton Hodge test: improved protocol for modified Hodge test for enhanced detection of NDM and other carbapenemase producers. J Clin Microbiol 54:640 –649. doi:10.1128/JCM.01298-15.

Poirel L, Naas T, Nicolas D, Collet L, Bellais S, Cavallo J, Nordmann P. 2000. Characterization of VIM-2, a Carbapenem-Hydrolyzing Metallo-β-Lactamase and Its Plasmid and Integron Borne Gene from a Pseudomonas aeruginosa Clinical Isolate in France. Antimicrobial agents and chemotherapy. 44: 891-897.

Promega C. 2010. Isolation of Genomic DNA from Whole Blood Wizard ® Genomic DNA Purification Kit. :1123–1126.

Ranjbar R, Ardashiri M, Samadi S, Afshar D. 2018. Distribution of extended-spectrum β-lactamases (ESBLs) among salmonella serogroups isolated from pediatric patients. Iran J Microbiol. 10(5):294–299.

Rhodes N, Richardson C, Heraty R, Liu J, Malczynski M, Qi C, Scheetz M. 2014. Unacceptably high error rates in Vitek 2 testing of cefepime susceptibility in extended-spectrum-β-lactamase-producing Escherichia coli. Antimicrob Agents Chemother. 58(7):3757–3761.

Rivera M, Rodriguez C, Flores R, Serquén L, Arce Z. 2015. Betalactamasas De Espectro Extendido Tipo Tem. Rev Peru Med Exp Salud Publica. 32(4):752–755.

Rivoarilala OL, Garin B, Andriamahery F, Collard JM. 2018. Rapid in vitro detection of CTX-M groups 1, 2, 8, 9 resistance genes by LAMP assays. PLoS One. 13(7):1–15.

Rossolini G, Andrea M, Mugnaioli C. 2008. The spread of CTX-M-type extended-spectrum betalactamases. 14:33–41.

Seiffert S, Marschall J, Perreten V, Carattoli A, Furrer H, Endimiani A. 2014. Emergence of Klebsiella pneumoniae co-producing NDM-1, OXA-48, CTX-M-15, CMY-16, QnrA and ArmA in Switzerland. Int J Antimicrob Agents. 44(3):260–262.

Shah K, Shrimali G, Mulla S. 2016. Comparison of double disc diffusion method and VITEK 2 compact system to screen the esbl producers in intensive care unit in hospital. 7(9):7–9.

Shaikh S, Fatima J, Shakil S, Rizvi S, Kamal M. 2015. Antibiotic resistance and extended spectrum beta-lactamases: Types, epdemiology and treatment. Saudi J Biol Sci. 22(1):90–101.

Sidjabat H, Paterson D. 2015. Multidrug-resistant Escherichia coli in Asia: Epidemiology and management. Expert Rev Anti Infect Ther. 13(5):575–591.

Supliguicha M, Supliguicha P, Ortega V, Pacurucu C, Lema J, Santander P, Delgado C, León V, Bermeo H, Peñafiel E, et al. 2017. Factores de riesgo para la infección del tracto urinario por enterobacterias productoras de betalactamasas de espectro extendido Resumen Risk factors for infection of urinary tract by extended-spectrum beta-lactamase producing enterobacteriaceae. 36.

Villar H, Jugo M, Macan A, Visser M, Hidalgo M, Maccallini G. 2014. Frequency and antibiotic susceptibility patterns of urinary pathogens in male outpatients in Argentina. J Infect Dev Ctries. 8(6):699–704.

Villegas M, Pallares C, Escandón K, Hernández C, Correa A, Álvarez C, Rosso F, Matta L, Luna C, Zurita J, et al. 2016. Characterization and clinical impact of bloodstream infection caused by carbapenemase-producing enterobacteriaceae in seven Latin American countries. PLoS One. 11(4):1–13.

Woerther P, Andremont A, Kantele A. 2017. Travel-acquired ESBL-producing Enterobacteriaceae: impact of colonization at individual and community level. J Travel Med. 24(1):S29–S34.

Yigit H, Queenan A, Anderson G, Domenech A, Biddle J, Steward C. 2001. Novel Carbapenem-Hydrolyzing β-Lactamase, KPC-1, from a Carbapenem-Resistant Strain of. Society. 45(4):1151–1161.

Zeng X, Lin J. 2013. Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Front Microbiol. 4(MAY):1–9.

Zurita J, Alcocer I, Ortega-paredes D, Barba P, Yauri F. 2013. Carbapenem-hydrolysing β -lactamase KPC-2 in Klebsiella pneumoniae Carbapenem-hydrolysing b -lactamase KPC-2 in Klebsiella pneumoniae isolated in Ecuadorian hospitals. J Glob Antimicrob Resist. 1(February 2018):6–8.