Formación de biofilm en aislados clínicos de Staphylococcus aureus y Staphylococcus epidermidis de Quito y el Puyo

Contenido principal del artículo

Iliana Alcocer

Resumen

Staphylococcus aureus y S. epidermidis presentan capacidad de formar biofilm. El
biofilm es una matriz polimérica que facilita la supervivencia bacteriana y es codificado por el
operon ica que involucra cuatro genes: icaA, icaB, icaC e icaD. El objetivo del presente estudio fue
identificar la formación de biofilm en aislados clínicos de Staphylococcus aureus y Staphylococcus
epidermidis por prueba cualitativa en Agar Rojo Congo (ACR) e identificación de presencia de
genes del locus ica mediante reacción en cadena de polimerasa (PCR). Se analizaron 99 aislados
clínicos de S. aureus y S. epidermidis provenientes de tres hospitales de tercer nivel en Quito y el
Puyo. Se usó como control la cepa American Type Culture Collection de S. aureus ATCC® 25923.
Con la prueba de ACR se identificaron 29 aislados productores de biofilm: casi negro 3,00 %,
negro con 16,00 % y muy negro 10,00 %. En contraste con la prueba de PCR se identificó 70,00
%, 35,00 %, 26,00 % y 66,00 % positivos para icaA, icaB, icaC e icaD, respectivamente. La prueba
de ACR es menos eficiente para identificar aislados productores de biofilm, mientras que la
amplificación de genes ica es más efectiva para determinar la capacidad que tiene S. aureus o S.
epidermidis para producir biofilm.


Palabras clave: agar rojo Congo, biofilm, estafilococos, factores de virulencia, genes ica

Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
1.
Alcocer I. Formación de biofilm en aislados clínicos de Staphylococcus aureus y Staphylococcus epidermidis de Quito y el Puyo. REMCB [Internet]. 23 de abril de 2021 [citado 5 de diciembre de 2021];42(1). Disponible en: http://remcb-puce.edu.ec/remcb/article/view/885
Sección
Artículos Científicos

Citas

Archer N, Mazaitis M, Costerton J, Leid J, Powers M, Shirtliff M. 2011. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence. 2(5): 445-459.

Arciola C, Baldassarri L, Montanaro L. 2001. Presence of icaA and icaD Genes and slime production in a collection of Staphylococcal strains from catheter-associated infections. Journal of Clinical Microbiology. 39(6): 2151-2156.

Arciola C, Campoccia D, Montanaro L. 2018. Implant infections: adhesion, biofilm formation and immune evasion. Nature Reviews Microbiology. 16(7): 397.

Arciola C, Campoccia D, Gamberini S, Cervellati M, Donati E, Montanaro L. 2002. Detection of slime production by means of an optimised Congo red agar plate test based on a colourimetric scale in Staphylococcus epidermidis clinical isolates genotyped for ica locus. Biomaterials. 23(21): 4233-4239.
Arciola C, Campoccia D, Ravaioli S, Montanaro L. 2015. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Frontiers in cellular and infection microbiology. 5(7): 1-10.

Arciola C, Gamberini S, Campoccia D, Visai L, Speziale P, Baldassarri L, Montanaro L. 2005. A multiplex PCR method for the detection of all five individual genes of ica locus in Staphylococcus epidermidis. A survey on 400 clinical isolates from prosthesis‐associated infections. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 75(2): 408-413.

Batistao D, Amaral de Campos P, Camilo N, Royer S, Araújo B, Naves K, Martins M, Pereira M, Henriques M, Gontijo-Filho P, Botelho C, Oliveira R, Ribas R. 2016. Biofilm formation of Brazilian meticillin-resistant Staphylococcus aureus strains: prevalence of biofilm determinants and clonal profiles. Journal of Medical Microbiology. 65(4): 286-297.

Cafini F, Nguyen L, Higashide M, Román F, Prieto J, Morikawa K. 2016. Horizontal gene transmission of the cfr gene to MRSA and Enterococcus: role of Staphylococcus epidermidis as a reservoir and alternative pathway for the spread of linezolid resistance. Journal of Antimicrobial Chemotherapy. 71(3): 587-592.
Calà C, Amodio E, Di Carlo E, Virruso R, Fasciana T, Giammanco A. 2015. Biofilm production in Staphylococcus epidermidis strains, isolated from the skin of hospitalized patients: genetic and phenotypic characteristics. New Microbiol. 38(4): 521-9.
Carr A, Daley M, Givens Merkel K, Rose D. 2018. Clinical Utility of Methicillin‐Resistant Staphylococcus aureus Nasal Screening for Antimicrobial Stewardship: A Review of Current Literature. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 38(12): 1216-1228.

Conlon K, Humphreys H, O'Gara J. 2002. icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. Journal of bacteriology. 184(16): 4400-4408.

Dong Y, Speer C, Glaser K. 2018. Beyond sepsis: Staphylococcus epidermidis is an underestimated but significant contributor to neonatal morbidity. Virulence. 9(1): 621-633.

Van Duijkeren E, Schink A, Roberts M, Wang Y, Schwarz S. 2018. Mechanisms of bacterial resistance to antimicrobial agents. Antimicrobial Resistance in Bacteria from Livestock and Companion Animals: 51-82.

Freeman D, Falkiner F, Keane C. 1989. New method for detecting slime production by coagulase negative staphylococci. Journal of Clinical Pathology. 42(8): 872-874.
Granslo H. 2012. Staphylococcus epidermidis-virulence factors and innate immune response [thesis]. [Tromsø, (NO)]. Universidad de Tromsø.

Haaber J, Penadés J, Ingmer H. 2017. Transfer of antibiotic resistance in Staphylococcus aureus. Trends in microbiology. 25(11): 893-905.

Haddad O, Merghni A, Elargoubi A, Rhim H, Kadri Y, Mastouri M. 2018. Comparative study of virulence factors among methicillin resistant Staphylococcus aureus clinical isolates. BioMed Central Infectious Diseases. 18(1): 560.

Heilmann C, Ziebuhr W, Becker K. 2019. Are coagulase-negative staphylococci virulent?. Clinical Microbiology and Infection. 25(9): 1071-1080.

Hennig S, Ziebuhr W. 2008. A transposase-independent mechanism gives rise to precise excision of IS256 from insertion sites in Staphylococcus epidermidis. Journal of bacteriology. 190(4): 1488-1490.

Jaśkiewicz M, Janczura A, Nowicka J, Kamysz W. 2019. Methods Used for the Eradication of Staphylococcal Biofilms. Antibiotics. 8(4): 174.

Ji Y, editor. 2007. Methicillin-resistant Staphylococcus aureus (MRSA) protocols. Volumen 1. New Jersey: Humana Press.

Kaiser T, Pereira E, dos Santos K, Maciel E, Schuenck R, Nunes A. 2013. Modification of the Congo red agar method to detect biofilm production by Staphylococcus epidermidis. Diagnostic microbiology and infectious disease. 75(3): 235-239.

King J, Kulhankova K, Stach C, Vu B, Salgado-Pabón W. 2016. Phenotypes and virulence among Staphylococcus aureus USA100, USA200, USA300, USA400, and USA600 clonal lineages. mSphere. 1(3).

Kleinschmidt S, Huygens F, Faoagali J, Rathnayake I, Hafner L. 2015. Staphylococcus epidermidis as a cause of bacteremia. Future Microbiology. 10(11): 1859-1879.

Knobloch J, Horstkotte M, Rohde H, Mack D. 2002. Evaluation of different detection methods of biofilm formation in Staphylococcus aureus. Medical microbiology and immunology. 191(2): 101-106.

Knobloch K, Von Osten H, Horstkotte M, Rohde H, Mack D. 2008. Biofilm formation is not necessary for development of quinolone-resistant “persister” cells in an attached Staphylococcus epidermidis population. The International Journal of Artificial Organs. 31(9): 752-760.

Koneman E, Allen S. 2008. Koneman. Diagnostico Microbiologico: Texto y Atlas en Color. Sexta edición. Buenos Aires(ARG): Editorial Médica Panamericana S.A.
Kozitskaya S, Cho S, Dietrich K, Marre R, Naber K, Ziebuhr W. 2004. The bacterial insertion sequence element IS256 occurs preferentially in nosocomial Staphylococcus epidermidis isolates: association with biofilm formation and resistance to aminoglycosides. Infection and immunity. 72(2): 1210-1215.

Kozitskaya S, Olson M, Fey P, Witte W, Ohlsen K, Ziebuhr W. 2005. Clonal analysis of Staphylococcus epidermidis isolates carrying or lacking biofilm-mediating genes by multilocus sequence typing. Journal of clinical microbiology. 43(9): 4751-4757.

Lee J, Bae Y, Han A, Lee S. 2016. Development of Congo red broth method for the detection of biofilm-forming or slime-producing Staphylococcus sp. Lebensmittel-Wissenschaft & Technologie. 73: 707-714.

Lim S, Lee D, Kwak W, Shin H, Ku H, Lee J, Lee G, Kim H, Choi S, Ryu S, Lee J. 2015. Comparative genomic analysis of Staphylococcus aureus FORC_001 and S. aureus MRSA252 reveals the characteristics of antibiotic resistance and virulence factors for human infection. Journal of Microbiology and Biotechnology. 25(1): 98-108.

Luther M, Bilida S, Mermel L, LaPlante K. 2015. Ethanol and isopropyl alcohol exposure increases biofilm formation in Staphylococcus aureus and Staphylococcus epidermidis. Infectious diseases and therapy. 4(2): 219-226.

McCarthy H, Rudkin J, Black N, Gallagher L, O'Neill E, O'Gara J. 2015. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Frontiers in cellular and infection microbiology. 5(1): 1-9.

Mirzaee M, Najar Peerayeh S, Ghasemian A. 2014. Detection of icaABCD genes and biofilm formation in clinical isolates of methicillin resistant Staphylococcus aureus. Iranian Journal of Pathology. 9(4): 257-262.

O'Gara J. 2007. ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. Federation of European Microbiological Societies Microbiology Letters. 270(2): 179-188.

Oliveira W, Silva P, Silva R, Silva G, Machado G, Coelho L, Correia M. 2018. Staphylococcus aureus and Staphylococcus epidermidis infections on implants. Journal of Hospital Infection. 98(2): 111-117.

Organización Mundial de la Salud (OMS). 2017. La OMS publica la lista de las bacterias para las que se necesitan urgentemente nuevos antibióticos [Internet]. Comunicado de Prensa de la OMS; [citado 2020 Feb 5]. Disponible en: http://www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-needed/es/

Otto M. 2009. Staphylococcus epidermidis—the'accidental'pathogen. Nature Reviews Microbiology. 7(8): 555.

Otto M. 2019. Staphylococcal biofilms. Gram‐Positive Pathogens: 699-711.

Pahissa A. 2009. Infecciones producidas por Staphylococcus aureus. [Internet]. Barcelona (ESP). Marge Books. Disponible en: https://books.google.com.ec/books?id=qFRukXHQX6QC&pg=PA6&dq=Pahissa+A.+2009.+Infecciones+producidas+por+Staphylococcus+aureus.+Barcelona,+Espa%C3%B1a,+Marge+Books.&hl=es&sa=X&ved=2ahUKEwjftcPyzqHtAhVRVTABHbjOB-gQ6AEwAHoECAUQAg#v=onepage&q=Pahissa%20A.%202009.%20Infecciones%20producidas%20por%20Staphylococcus%20aureus.%20Barcelona%2C%20Espa%C3%B1a%2C%20Marge%20Books.&f=false

Paluch-Oleś J, Magryś A, Kozioł-Montewka M, Niedzielski A, Niedźwiadek J, Niedzielska G, Kotowski M. 2011. The phenotypic and genetic biofilm formation characteristics of coagulase-negative staphylococci isolates in children with otitis media. International Journal of Pediatric Otorhinolaryngology. 75(1): 126-130.

Petrelli D, Zampaloni C, d’Ercole S, Prenna M, Ballarini P, Ripa S, Vitali L. 2006. Analysis of different genetic traits and their association with biofilm formation in Staphylococcus epidermidis isolates from central venous catheter infections. European Journal of Clinical Microbiology and Infectious Diseases. 25(12): 773-781.
Rodríguez E, Gamboa M, Hernández F, García J. 2006. Bacteriología general: Principios y prácticas de laboratorio. [Internet]. San José (CR). Editorial Universidad de Costa Rica. Disponible en: https://books.google.com.ec/books?id=vwB0fgirgN0C&printsec=frontcover&dq=Rodr%C3%ADguez+E,+Gamboa+M,+Hern%C3%A1ndez+F,+Garc%C3%ADa+J.+2006.+Bacteriolog%C3%ADa+general:+Principios+y+pr%C3%A1cticas+de+laboratorio.+Costa+Rica:+Editorial+Universidad+de+Costa+Rica.&hl=es&sa=X&ved=2ahUKEwjvxrLmz6HtAhV4SzABHesvAb0Q6AEwAXoECAIQAg#v=onepage&q&f=false

Rohde H, Knobloch J, Horstkotte M, Mack D. 2001. Correlation of Staphylococcus aureus icaADBCgenotype and biofilm expression phenotype. Journal of Clinical Microbiology. 39(12): 4595-4596.

Ruano C, Maldonado J, Salazar R. 2004. Frecuencia de infección nosocomial en terapia intensiva: datos del proyecto PIN-FCM. Revista Cubana de Higiene y Epidemiología. 42(1)

Santos A, Galdino A, Mello T, Ramos L, Branquinha M, Bolognese A, Neto J y Roudbary M. 2018. What are the advantages of living in a community? A microbial biofilm perspective! Memórias do Instituto Oswaldo Cruz. 113(9).

Savage V, Chopra I, O'Neill A. 2013. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrobial agents and chemotherapy. 57(4): 1968-1970.

Silva Filho R. 2014. Produção de biofilme em amostras clínicas de S. epidermidis: influência de concentrações subinibitórias de antissépticos (etanol e clorexidina) e associação com potenciais marcadores de virulência (Disertación Doctoral). [Rio de Janeiro (BR)]: Fundação Oswaldo Cruz. Instituto Nacional de Controle de Qualidade em Saúde. Recuperado de: https://www.arca.fiocruz.br/handle/icict/10997

Solati S, Tajbakhsh E, Khamesipour F, Gugnani H. 2015. Prevalence of virulence genes of biofilm producing strains of Staphylococcus epidermidis isolated from clinical samples in Iran. Applied Microbiology Express. 5(1): 47.

Tango C, Akkermans S, Hussain M, Khan I, Van Impe J, Jin Y, Oh D. 2018. Modeling the effect of pH, water activity, and ethanol concentration on biofilm formation of Staphylococcus aureus. Food microbiology. 76: 287-295.

Traisaeng S, Herr D, Kao H, Chuang T, Huang C. 2019. A derivative of butyric acid, the fermentation metabolite of Staphylococcus epidermidis, inhibits the growth of a Staphylococcus aureus strain isolated from atopic dermatitis patients. Toxins. 11(6): 311.

Zapotoczna M, O’Neill E, O'Gara J. 2016. Untangling the diverse and redundant mechanisms of Staphylococcus aureus biofilm formation. PLoS pathogens. 12(7): e1005671.

Ziebuhr W, Krimmer V, Rachid S, Lößner I, Götz F, Hacker J. 1999. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Molecular Microbiology. 32(2): 345-356.

Zurita J, Barba P, Ortega-Paredes D, Mora M, Rivadeneira S. 2016. Local circulating clones of Staphylococcus aureus in Ecuador. Brazilian Journal of Infectious Diseases. 20(6): 525-533.