Biofilm formation in clinical isolates of Staphylococcus aureus and Staphylococcus epidermidis from Quito and Puyo

Main Article Content

Andrés Sanguano
María Fernanda Yauri
Iliana Alcocer

Abstract

Staphylococcus aureus and S. epidermidis are capable to produce biofilm. The biofilm
is a polymeric matrix that ease the bacterial survival and is produced by the locus ica which has
four genes icaA, icaB, icaC and icaD. The objective of this study was to detect the presence of
isolates that can produce biofilm in clinical isolates of Staphylococcus aureus and Staphylococcus
epidermidis by Congo red agar (CRA) and gen detection of the locus ica genes by polymerase
chain reaction (PCR). 99 clinical isolates of S. aureus and S. epidermidis from three third level
hospitals in Quito and Puyo were analyzed. The strain of S. aureus ATCC® 25923 from the American
Type Culture Collection was used as a control. With the CRA test 29 isolates with a phenotype
capable of producing biofilm were identified: almost black 3,00 %, black 16,00 % and very black
10,00 %. Nevertheless, with the PCR test 70,00 %, 35,00 %, 26,00 % y 66,00 % of the isolates were
positive for icaA, icaB, icaC e icaD, respectively. The CRA test is less effective identifying isolates
capable of producing biofilm, whereas the gene amplification of the ica genes is more effective
at establishing whether an isolate of S. aureus or S. epidermidis is capable of producing or not.




Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Sanguano A, Yauri MF, Alcocer I. Biofilm formation in clinical isolates of Staphylococcus aureus and Staphylococcus epidermidis from Quito and Puyo. REMCB [Internet]. 2021Apr.23 [cited 2024Jul.3];42(1). Available from: https://remcb-puce.edu.ec/remcb/article/view/885
Section
Artículos Científicos

References

Archer N, Mazaitis M, Costerton J, Leid J, Powers M, Shirtliff M. 2011. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence. 2(5): 445-459.

Arciola C, Baldassarri L, Montanaro L. 2001. Presence of icaA and icaD Genes and slime production in a collection of Staphylococcal strains from catheter-associated infections. Journal of Clinical Microbiology. 39(6): 2151-2156.

Arciola C, Campoccia D, Montanaro L. 2018. Implant infections: adhesion, biofilm formation and immune evasion. Nature Reviews Microbiology. 16(7): 397.

Arciola C, Campoccia D, Gamberini S, Cervellati M, Donati E, Montanaro L. 2002. Detection of slime production by means of an optimised Congo red agar plate test based on a colourimetric scale in Staphylococcus epidermidis clinical isolates genotyped for ica locus. Biomaterials. 23(21): 4233-4239.
Arciola C, Campoccia D, Ravaioli S, Montanaro L. 2015. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Frontiers in cellular and infection microbiology. 5(7): 1-10.

Arciola C, Gamberini S, Campoccia D, Visai L, Speziale P, Baldassarri L, Montanaro L. 2005. A multiplex PCR method for the detection of all five individual genes of ica locus in Staphylococcus epidermidis. A survey on 400 clinical isolates from prosthesis‐associated infections. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 75(2): 408-413.

Batistao D, Amaral de Campos P, Camilo N, Royer S, Araújo B, Naves K, Martins M, Pereira M, Henriques M, Gontijo-Filho P, Botelho C, Oliveira R, Ribas R. 2016. Biofilm formation of Brazilian meticillin-resistant Staphylococcus aureus strains: prevalence of biofilm determinants and clonal profiles. Journal of Medical Microbiology. 65(4): 286-297.

Cafini F, Nguyen L, Higashide M, Román F, Prieto J, Morikawa K. 2016. Horizontal gene transmission of the cfr gene to MRSA and Enterococcus: role of Staphylococcus epidermidis as a reservoir and alternative pathway for the spread of linezolid resistance. Journal of Antimicrobial Chemotherapy. 71(3): 587-592.
Calà C, Amodio E, Di Carlo E, Virruso R, Fasciana T, Giammanco A. 2015. Biofilm production in Staphylococcus epidermidis strains, isolated from the skin of hospitalized patients: genetic and phenotypic characteristics. New Microbiol. 38(4): 521-9.
Carr A, Daley M, Givens Merkel K, Rose D. 2018. Clinical Utility of Methicillin‐Resistant Staphylococcus aureus Nasal Screening for Antimicrobial Stewardship: A Review of Current Literature. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 38(12): 1216-1228.

Conlon K, Humphreys H, O'Gara J. 2002. icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. Journal of bacteriology. 184(16): 4400-4408.

Dong Y, Speer C, Glaser K. 2018. Beyond sepsis: Staphylococcus epidermidis is an underestimated but significant contributor to neonatal morbidity. Virulence. 9(1): 621-633.

Van Duijkeren E, Schink A, Roberts M, Wang Y, Schwarz S. 2018. Mechanisms of bacterial resistance to antimicrobial agents. Antimicrobial Resistance in Bacteria from Livestock and Companion Animals: 51-82.

Freeman D, Falkiner F, Keane C. 1989. New method for detecting slime production by coagulase negative staphylococci. Journal of Clinical Pathology. 42(8): 872-874.
Granslo H. 2012. Staphylococcus epidermidis-virulence factors and innate immune response [thesis]. [Tromsø, (NO)]. Universidad de Tromsø.

Haaber J, Penadés J, Ingmer H. 2017. Transfer of antibiotic resistance in Staphylococcus aureus. Trends in microbiology. 25(11): 893-905.

Haddad O, Merghni A, Elargoubi A, Rhim H, Kadri Y, Mastouri M. 2018. Comparative study of virulence factors among methicillin resistant Staphylococcus aureus clinical isolates. BioMed Central Infectious Diseases. 18(1): 560.

Heilmann C, Ziebuhr W, Becker K. 2019. Are coagulase-negative staphylococci virulent?. Clinical Microbiology and Infection. 25(9): 1071-1080.

Hennig S, Ziebuhr W. 2008. A transposase-independent mechanism gives rise to precise excision of IS256 from insertion sites in Staphylococcus epidermidis. Journal of bacteriology. 190(4): 1488-1490.

Jaśkiewicz M, Janczura A, Nowicka J, Kamysz W. 2019. Methods Used for the Eradication of Staphylococcal Biofilms. Antibiotics. 8(4): 174.

Ji Y, editor. 2007. Methicillin-resistant Staphylococcus aureus (MRSA) protocols. Volumen 1. New Jersey: Humana Press.

Kaiser T, Pereira E, dos Santos K, Maciel E, Schuenck R, Nunes A. 2013. Modification of the Congo red agar method to detect biofilm production by Staphylococcus epidermidis. Diagnostic microbiology and infectious disease. 75(3): 235-239.

King J, Kulhankova K, Stach C, Vu B, Salgado-Pabón W. 2016. Phenotypes and virulence among Staphylococcus aureus USA100, USA200, USA300, USA400, and USA600 clonal lineages. mSphere. 1(3).

Kleinschmidt S, Huygens F, Faoagali J, Rathnayake I, Hafner L. 2015. Staphylococcus epidermidis as a cause of bacteremia. Future Microbiology. 10(11): 1859-1879.

Knobloch J, Horstkotte M, Rohde H, Mack D. 2002. Evaluation of different detection methods of biofilm formation in Staphylococcus aureus. Medical microbiology and immunology. 191(2): 101-106.

Knobloch K, Von Osten H, Horstkotte M, Rohde H, Mack D. 2008. Biofilm formation is not necessary for development of quinolone-resistant “persister” cells in an attached Staphylococcus epidermidis population. The International Journal of Artificial Organs. 31(9): 752-760.

Koneman E, Allen S. 2008. Koneman. Diagnostico Microbiologico: Texto y Atlas en Color. Sexta edición. Buenos Aires(ARG): Editorial Médica Panamericana S.A.
Kozitskaya S, Cho S, Dietrich K, Marre R, Naber K, Ziebuhr W. 2004. The bacterial insertion sequence element IS256 occurs preferentially in nosocomial Staphylococcus epidermidis isolates: association with biofilm formation and resistance to aminoglycosides. Infection and immunity. 72(2): 1210-1215.

Kozitskaya S, Olson M, Fey P, Witte W, Ohlsen K, Ziebuhr W. 2005. Clonal analysis of Staphylococcus epidermidis isolates carrying or lacking biofilm-mediating genes by multilocus sequence typing. Journal of clinical microbiology. 43(9): 4751-4757.

Lee J, Bae Y, Han A, Lee S. 2016. Development of Congo red broth method for the detection of biofilm-forming or slime-producing Staphylococcus sp. Lebensmittel-Wissenschaft & Technologie. 73: 707-714.

Lim S, Lee D, Kwak W, Shin H, Ku H, Lee J, Lee G, Kim H, Choi S, Ryu S, Lee J. 2015. Comparative genomic analysis of Staphylococcus aureus FORC_001 and S. aureus MRSA252 reveals the characteristics of antibiotic resistance and virulence factors for human infection. Journal of Microbiology and Biotechnology. 25(1): 98-108.

Luther M, Bilida S, Mermel L, LaPlante K. 2015. Ethanol and isopropyl alcohol exposure increases biofilm formation in Staphylococcus aureus and Staphylococcus epidermidis. Infectious diseases and therapy. 4(2): 219-226.

McCarthy H, Rudkin J, Black N, Gallagher L, O'Neill E, O'Gara J. 2015. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Frontiers in cellular and infection microbiology. 5(1): 1-9.

Mirzaee M, Najar Peerayeh S, Ghasemian A. 2014. Detection of icaABCD genes and biofilm formation in clinical isolates of methicillin resistant Staphylococcus aureus. Iranian Journal of Pathology. 9(4): 257-262.

O'Gara J. 2007. ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. Federation of European Microbiological Societies Microbiology Letters. 270(2): 179-188.

Oliveira W, Silva P, Silva R, Silva G, Machado G, Coelho L, Correia M. 2018. Staphylococcus aureus and Staphylococcus epidermidis infections on implants. Journal of Hospital Infection. 98(2): 111-117.

Organización Mundial de la Salud (OMS). 2017. La OMS publica la lista de las bacterias para las que se necesitan urgentemente nuevos antibióticos [Internet]. Comunicado de Prensa de la OMS; [citado 2020 Feb 5]. Disponible en: http://www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-needed/es/

Otto M. 2009. Staphylococcus epidermidis—the'accidental'pathogen. Nature Reviews Microbiology. 7(8): 555.

Otto M. 2019. Staphylococcal biofilms. Gram‐Positive Pathogens: 699-711.

Pahissa A. 2009. Infecciones producidas por Staphylococcus aureus. [Internet]. Barcelona (ESP). Marge Books. Disponible en: https://books.google.com.ec/books?id=qFRukXHQX6QC&pg=PA6&dq=Pahissa+A.+2009.+Infecciones+producidas+por+Staphylococcus+aureus.+Barcelona,+Espa%C3%B1a,+Marge+Books.&hl=es&sa=X&ved=2ahUKEwjftcPyzqHtAhVRVTABHbjOB-gQ6AEwAHoECAUQAg#v=onepage&q=Pahissa%20A.%202009.%20Infecciones%20producidas%20por%20Staphylococcus%20aureus.%20Barcelona%2C%20Espa%C3%B1a%2C%20Marge%20Books.&f=false

Paluch-Oleś J, Magryś A, Kozioł-Montewka M, Niedzielski A, Niedźwiadek J, Niedzielska G, Kotowski M. 2011. The phenotypic and genetic biofilm formation characteristics of coagulase-negative staphylococci isolates in children with otitis media. International Journal of Pediatric Otorhinolaryngology. 75(1): 126-130.

Petrelli D, Zampaloni C, d’Ercole S, Prenna M, Ballarini P, Ripa S, Vitali L. 2006. Analysis of different genetic traits and their association with biofilm formation in Staphylococcus epidermidis isolates from central venous catheter infections. European Journal of Clinical Microbiology and Infectious Diseases. 25(12): 773-781.
Rodríguez E, Gamboa M, Hernández F, García J. 2006. Bacteriología general: Principios y prácticas de laboratorio. [Internet]. San José (CR). Editorial Universidad de Costa Rica. Disponible en: https://books.google.com.ec/books?id=vwB0fgirgN0C&printsec=frontcover&dq=Rodr%C3%ADguez+E,+Gamboa+M,+Hern%C3%A1ndez+F,+Garc%C3%ADa+J.+2006.+Bacteriolog%C3%ADa+general:+Principios+y+pr%C3%A1cticas+de+laboratorio.+Costa+Rica:+Editorial+Universidad+de+Costa+Rica.&hl=es&sa=X&ved=2ahUKEwjvxrLmz6HtAhV4SzABHesvAb0Q6AEwAXoECAIQAg#v=onepage&q&f=false

Rohde H, Knobloch J, Horstkotte M, Mack D. 2001. Correlation of Staphylococcus aureus icaADBCgenotype and biofilm expression phenotype. Journal of Clinical Microbiology. 39(12): 4595-4596.

Ruano C, Maldonado J, Salazar R. 2004. Frecuencia de infección nosocomial en terapia intensiva: datos del proyecto PIN-FCM. Revista Cubana de Higiene y Epidemiología. 42(1)

Santos A, Galdino A, Mello T, Ramos L, Branquinha M, Bolognese A, Neto J y Roudbary M. 2018. What are the advantages of living in a community? A microbial biofilm perspective! Memórias do Instituto Oswaldo Cruz. 113(9).

Savage V, Chopra I, O'Neill A. 2013. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrobial agents and chemotherapy. 57(4): 1968-1970.

Silva Filho R. 2014. Produção de biofilme em amostras clínicas de S. epidermidis: influência de concentrações subinibitórias de antissépticos (etanol e clorexidina) e associação com potenciais marcadores de virulência (Disertación Doctoral). [Rio de Janeiro (BR)]: Fundação Oswaldo Cruz. Instituto Nacional de Controle de Qualidade em Saúde. Recuperado de: https://www.arca.fiocruz.br/handle/icict/10997

Solati S, Tajbakhsh E, Khamesipour F, Gugnani H. 2015. Prevalence of virulence genes of biofilm producing strains of Staphylococcus epidermidis isolated from clinical samples in Iran. Applied Microbiology Express. 5(1): 47.

Tango C, Akkermans S, Hussain M, Khan I, Van Impe J, Jin Y, Oh D. 2018. Modeling the effect of pH, water activity, and ethanol concentration on biofilm formation of Staphylococcus aureus. Food microbiology. 76: 287-295.

Traisaeng S, Herr D, Kao H, Chuang T, Huang C. 2019. A derivative of butyric acid, the fermentation metabolite of Staphylococcus epidermidis, inhibits the growth of a Staphylococcus aureus strain isolated from atopic dermatitis patients. Toxins. 11(6): 311.

Zapotoczna M, O’Neill E, O'Gara J. 2016. Untangling the diverse and redundant mechanisms of Staphylococcus aureus biofilm formation. PLoS pathogens. 12(7): e1005671.

Ziebuhr W, Krimmer V, Rachid S, Lößner I, Götz F, Hacker J. 1999. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Molecular Microbiology. 32(2): 345-356.

Zurita J, Barba P, Ortega-Paredes D, Mora M, Rivadeneira S. 2016. Local circulating clones of Staphylococcus aureus in Ecuador. Brazilian Journal of Infectious Diseases. 20(6): 525-533.