AmpC, oprD Expression Analysis in β-lactam Resistant Pseudomonas aeruginosa Clinical Isolates 1 from a Tertiary Level Hospital in Ecuador

Main Article Content

Karina Calvopiña
Marcelo Grijalva
María José Vallejo
Rachid Seqqat

Abstract

Innate and acquired antibiotic resistance mechanisms in Pseudomonas present a challenge for clini- cians looking for timely and effective chemotherapy. This is particularly  important in critical care hospital settings. This study is aimed at achieving a deeper understanding of two of the most important drug resistance mechanisms in Pseudomonas aeruginosa at the molecular  level. One hundred clinical isolates of Pseudomonas aeruginosa were obtained from a tertiary level hospital in Quito, Ecuador. Expression of ampC and oprD was analysed through quan- titative real-time PCR  assays. A comparison  between the ampC and oprD expression  profiles and the phenotypes in antimicrobial susceptibility testing (AST) was conducted,  with more than 50% of the isolates having concordant profiles for both ampC and oprD expression. Our results suggest that ampC and oprD expression might provide useful information about molecular resistance mechanisms in strains which are circulating in Ecuador. However, larger scale studies could clarify drug resistance mechanisms in order to guide targeted treatment.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Calvopiña K, Grijalva M, Vallejo MJ, Seqqat R. AmpC, oprD Expression Analysis in β-lactam Resistant Pseudomonas aeruginosa Clinical Isolates 1 from a Tertiary Level Hospital in Ecuador. REMCB [Internet]. 2017May30 [cited 2024Jul.3];38(1):35-3. Available from: https://remcb-puce.edu.ec/remcb/article/view/19
Section
Artículos Científicos

References

Andrade S, Jones R, Gales A, Sader H. 2003. Increasing prevalence of antimicrobial resistance among Pseudomonas aeruginosa isolates in Latin American medical centres: 5 year report of the SENTRY Antimicrobial Surveillance Program (1997- 2001). Journal of Antimicrobial Chemotherapy 52 (1): 140–141.

Cabot G, Ocampo-Sosa A, Tubau F, Macia M, Rodríguez C, Moya B. 2011. Overexpression of AmpC and Efflux Pumps in Pseudomonas aeruginosa Isolates from Bloodstream Infections: Prevalence and Impact on Resistance in a Spanish Multicenter Study. Antimicrobial agents and chemotherapy 55(5):1906–1911.

Giwercman B, Lambert P, Rosdahl V, Shand G, Hoiby N. 1990. Rapid emergence of resistance in Pseudomonas aeruginosa in cystic fibrosis patients due to in-vivo selection of stable partially derepressed β-lactamase producing strains. The Journal of antimicrobial chemotherapy 26(2):247–259.

Hancock R, Brinkman F. 2002. Function of Pseudomonas aeruginosa: porins in uptake and efflux. Annual review of microbiology 56(1):17¬–38.

Jacoby, G. 2009. AmpC β-lactamases. Clinical microbiology reviews 22(1):161–182.

Kipnis E, Sawa T, Wiener-Kronish J. 2006. Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Médecine et maladies infectieuses 36(2):78–91.

Lee J, and Ko K. 2012. OprD mutations and inactivation, expression of efflux pumps and AmpC, and metallo-B-lactamases in carbapenem-resistant Pseudomonas aeruginosa isolates from South Korea. International Journal of Antimicrobial Agents 40(2):168–72.

Lister P, Wolter D, Hanson N. 2009. Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms. Clinical microbiology reviews 22(4):582–610.

Livermore D. 2002. Multiple Mechanisms of Antimicrobial Resistance in Pseudomonas aeruginosa: Our Worst Nightmare? Clinical infectious diseases, 34(5):634–40.

LucDumas J, VanDelden C, Perron K, Kohler T. 2006. Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. FEMS microbiology letters 254(2):217– 25.

Luján Roca D. 2014. Pseudomonas aeruginosa: a dangerous adversary. Acta bioquímica clínica latinoamericana 48(4):465–474.

Nikaido H. 1989. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrobial agents and chemotherapy 33(11): 1831–1836.

Obritsch M, Fish D, MacLaren R, Jung R. 2004. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrobial agents and chemotherapy 48(12): 4606–4610.

Shen J, Pan Y, Fang Y. 2015. Role of the Outer Membrane Protein OprD2 in Carbapenem-Resistance Mechanisms of Pseudomonas aeruginosa. PloS one 10(10):e0139995.

Stover C, Pham X, Erwin, A. 2000. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406: 959–964.

Vedel G. 2005. Method to determine B-lactam resistance phenotypes in Pseudomonas aeruginosa using the disc agar diffusion test. Journal of Antimicrobial Chemotherapy. 56(4):657–664.

Winsor G, Lam D, Fleming L, Lo R, Whiteside M, Yu N. 2011. Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic acids research 39:D596-600.

Woods D. 2004. Comparative genomic analysis of Pseudomonas aeruginosa virulence. Trends in microbiology 12(10):437–439.

Yoneyama H, Nakae T. 1993. Mechanism of efficient elimination of protein D2 in outer membrane of imipenem-resistant Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy. 37(11): 2385–2390.

Yuan J, Reed, A, Feng C, Neal C. 2006. Statistical analysis of real-time PCR data. BMC Bioinformatics, 7:85.