Evaluation of the genetic variability of capulà (Prunus serotina subsp. capulí) in three provinces of Ecuador

Main Article Content

Dámaris P. Intriago Baldeón
María de Lourdes Torres
Venancio Arahana
José Tobar

Abstract

Prunus serotina subsp. capulàis a wild arboreal tetraploid species widely distributed throughout America and can be found in the Ecuadorian highlands. Capuli has a high economic potential for food, timber, and medicine; however, there is little information available concerning the history and development of this crop in Ecuador.


This study evaluated the genetic diversity of capulàin three provinces in the Ecuadorian highlands. A total of 88 capulàindividuals from Pichincha, Cañar, and Azuay provinces were analyzed using eight heterologous microsatellite (SSR) markers. A dendrogram with its respective bootstrap analyses, a principal coordinate analysis (PCoA), a Mantel test, and Fst genetic distance index values were generated. The results show a moderate degree of genetic variability among capulàindividuals analyzed and some level of genetic differentiation between individuals following a north-south distribution which is not related to the geographical distance among the evaluated samples. Various hypotheses that attempt to explain these results are discussed.


 

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
P. Intriago Baldeón D, Torres M de L, Arahana V, Tobar J. Evaluation of the genetic variability of capulà (Prunus serotina subsp. capulí) in three provinces of Ecuador. REMCB [Internet]. 2017Aug.10 [cited 2024May19];34(1-2):11-4. Available from: https://remcb-puce.edu.ec/remcb/article/view/231
Section
Artículos Científicos

References

Auclair A y Cottam G. 1971. Dynamics of black cherry (Prunus serotina Erhr.) in Southern Wisconsin oak forests. Ecological Monographs, 41 (2): 153–177.Baldauf SL. 2003. Phylogeny for the faint of heart: a tutorial. TRENDS in Genetics, 19: 345-351.

Balloux F y Lugon-Moulin N. 2002. The estimation of population differentiation with microsatellite markers. Molecular Ecology, 11: 155–165.

Benbouza H, Jacquemin J-M, Baudoin J-P y Mergeai G. 2006. Optimization of a reliable, fast, cheap, and sensitive silver staining method to detect SSR markers in polyacrylamide gels. Biotechnology, Agronomy, Society and Environment, 2: 77–81.

Budak H, Bolek Y, Dokuyucu T y Akkaya A. 2004. Potential Uses of Molecular Markers in Crop Improvement. KSU
Journal of Science and Engineering, 7: 75–79.

Cheng Z, Gasic K, Wang Z y Chen X. 2011. Genetic diversity and genetic structure in natural populations of Prunus davidiana germplasm by SSR markers. Journal of Agricultural Science, 3: 114–125.

Cipriani G, Lot G, Huang W-G, Marrazzo MT, Peterlunger E y Testolin R. 1999. AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L) Batsch): isolation, characterization and cross-species amplification in Prunus. Theoretical and Applied Genetics, 99: 65–72.

Comisión Nacional para el conocimiento y el uso de la biodiversidad (CONABIO). 2012. Prunus serotina. Página de Internet: www.conabio.gob.mx/conocimiento/info_especies/arbolesdoctos/60rosac6m.pdf. Consultada 24-febrero-2013.

Diario “El Comercio”. 2012. El capulí es un fruto andino que se desarrolla y degusta en la serranía. Página de internet www.elcomercio.com/agromar/capuli-andino-desarrolla-degusta-Serrania_0_652134912.html. Consultada 21-agosto-2013.

Dirlewanger E, Cosson P, Tavaud M, Aranzana, MJ, Poizat C, Zanetto A, Arus P y Laigret F. 2002. Development of microsatellite markers in peach (Prunus persica (L.) Batsch) and their use in genetic diversity analysis in peach and sweet cherry (Prunus aviumL.). Theoretical and Applied Genetics, 105: 127–138.

Downey SL, y Iezzoni AF. 2000. Polymorphic DNA Markers in Black Cherry (Prunus serotina) Are Identified Using Sequences from Sweet Cherry, Peach, and Sour Cherry. Journal of the American Society for Horticultural Science, 125: 76–80.

Fresnedo-Ramírez J, Segura S y Muratalla-Lua A. 2011. Morphovariability of capulín (Prunus serotina Ehrh.) in the central-western region of Mexico from a plant genetic resources perspective. Genetic Resources and Crop Evolution, 58: 481–495.

Gao Z-H, Shen Z-J, Han Z-H, Fang J-G, Zhang Y-M y Zhang Z. 2004. Microsatellite markers and genetic diversity in Japanese Apricot (Prunus mume). HortScience, 39: 1571–1574.

Guevara, RD. 1979. Capitulo Séptimo-Región de los Valles Interandinos. En: Principios Fundamentales de Ecología Ecuatoriana: 57-70. Gráficas MediaVilla HNOS. Quito.

Instituto Nacional de Meteorología e Hidrología (INAMHI). 2013. Ma-pas Climáticos del Ecuador. Página de Internet: www.inamhi.gob.ec/index.php/tiempo/mapas. Consultada: 30-agosto-2013.

Jiménez M, Castillo I, Azuara E y Beristain CI. 2011. Antioxidant and antimicrobial activity of capulin (Prunus serotina subsp. capulí) extracts. Revista Mexicana de Ingeniería Química, 10: 29–37.

Kieleczawa J. 2006. DNA Sequencing II Optimizing Preparation and Cleanup. Jones and Bartlett Publishers. Ontario. 362 pp.Koskinen MT, Hirvonen H, Landry P-A y Primmer CR. 2004. The benefits of increasing the number of microsatellites utilized in genetic population studies: an empirical perspective. Hereditas, 141: 61–67.

McVaugh R. 1951. A revision of the North American Black Cherries (Prunus serotina Ehrh. and Relatives). Brittonia, 7: 279–315.

Mnejja M, Garcia-Mas J, Audergon J-M, y Arus P. 2010. Prunus microsatellite marker transferability across rosaceous crops. Tree Genetics &Genomes, 6: 689–700.

Morden-Moore AL y Willson MF. 1982. On the ecological significance of fruit color in Prunus serotina and Rubus occidentalis: field experiments. Canadian Journal of Botany, 60: 1554–1560.

Mille L. 1942. El Capulí. En: FLORA, 2:50-51. Instituto de Ciencias Naturales del Ecuador. Quito.

Mondini L, Noorani A y Pagnotta M. 2009. Assessing Plant Genetic Diversity by Molecular Tools. Diversity, 1: 19–35.

Moose S y Mumm R. 2008. Molecular Plant Breeding as the Foundation for 21st-century crop improvement. Plant Physiology, 147: 969–977.

Mulligan GA y Munro DB. 1981. The biology of Canadian weeds. 51. Prunus virginiana L. and P. serotinaEhrh. Canadian Journal of Plant Science, 6l: 911-992.Pairon M., Jacquemart A y Potter D. 2008. Detection and Characterization of genome-specific Microsatellite markers in Allotetraploid Prunus serotina. Journal of the American Society for Horticultural Science, 133: 390–395.

Palacios W. 2011. Árboles del Ecuador-Ministerio del Ambiente del Gobierno Nacional de la República del Ecuador. Primera edición. Grupo Comunicacional Efigie. Quito. 923 pp.

Peakall R y Smouse P E. 2012. GenAlEx 6.5: genetic analysis in Excel. Página de Internet: www.biology.anu.edu.au/GenAlEx/Welcome.html. Consultada 28-agosto-2013.

Perrier X, Jacquemoud-Collet, JP. 2006. Darwin software. Página de Internet: www.darwin.cirad.fr. Consultada 21-febrero-2013.

Popenoe W y Pachano A. 1922. The capulin cherry. Journal of Heredity, 13: 50–62.Rohlf, FJ. 2008. NTSYSpc: Numerical Taxonomy System, ver. 2.20. Exeter Publishing. Ltd. Setauket.

Schneider S, Kueffer J-M, Roessli D y Ex-coffier L. 1997. ARLEQUIN ver. 1.1. A software for population genetics data analysis. Página de Internet: www.anthropologie.unige.ch/arle-quin. Consultada 4-Marzo-2013.

Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M y Sansavini S. 2000. Microsatellite DNA in peach and its use in fingerprinting and testing the genetic origin of cultivars. Genome, 43: 512–520.

Ulloa Ulloa C y Moller Jorgensen P. 1995. Árboles y arbustos de Los Andes del Ecuador. Segunda edición. Ediciones Abya Yala. Quito. 329 pp.

Vargas M. 2002. Ecología y Biodiversidad del Ecuador. Primera edición. E. P. Centro de Impresión. Quito. 232 pp.

Wang H, Walla JA, Zhong S, Huang D y Dai W. 2012. Development and cross-species/genera transferability of microsatellite markers discovered using 454 genome sequencing in chokecherry (Prunus virginiana L.). Plant Cell Reports, 31: 2047–2055.

Wang M, Barkley N y Jenkins T. 2009. Microsatellite Markers in Plants and Insects. Part I: Applications of Biotechnology. Genes, Genomes, and Genomics,3: x-y.

Yap VI y Nelson RJ. 1996. WINBOOT: A Program for Performing Bootstrap Analysis of Binary Data to Determine the Confidence Limits of UPGMA-Based Dendrograms. International Rice Research Institute. Manila.

Zhebentyayeva TN, Reighard GL, Gorina VM y Abbott AG. 2003. Simple sequence repeats (SSR) analysis for assessment of genetic variability in apricot germplasm. Theoretical and Applied Genetics, 106: 435–444.