Molecular modeling of the interaction of paracetamol and 4-aminophenol with the enzymes Cyclooxygenase 1 and 2

Main Article Content

Sebastián Cuesta
Cristina Vela
Lorena Meneses
Shirley Morocho

Abstract

In this research, a docking study of the interaction of Paracetamol and its active metabolite, 4- aminophenol, with the enzymes Cyclooxygenase 1 and Cyclooxygenase 2 is presented. The objective of this project was to use computational methods to explain, in a molecular level, the weak anti-inflammatory activity of Paracetamol by its interaction with the enzymes Cyclooxygenase 1 and 2. Quantum Mechanical methods were used for ligand optimization while Molecular Docking was used to model the interaction of these ligands with the enzymes and their active sites. Results obtained show that the poses with most affinity for Paracetamol and 4-aminophenol were not found in the active site of Cyclooxygenase 1. Comparison with arachidonic acid shows that the binding energies are about 1 kcal/mol higher indicating a weak inhibition. In the case of Cyclooxygenase 2, the results obtained were similar. This suggests that the main mechanism of action of Paracetamol is not given by the inhibition of the Cyclooxygenase 1 or 2 by this active ingredient or its primary metabolite. These results are in agreement with the differences in the pharmacological action and side effects that Paracetamol has against molecules of the same group such as Ibuprofen.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Cuesta S, Vela C, Meneses L, Morocho S. Molecular modeling of the interaction of paracetamol and 4-aminophenol with the enzymes Cyclooxygenase 1 and 2. REMCB [Internet]. 2017Nov.9 [cited 2024Jul.3];38(2):97-105. Available from: https://remcb-puce.edu.ec/remcb/article/view/546
Section
Artículos Científicos

References

Agence Nationale de Sécurité du Médicament et des Produits de Santé. 2014. Analyse de ventes de médicaments en France en 2013. Francia: ANSM.

Anderson B. 2008. Paracetamol (Acetaminophen): mechanism of action. Pediatric Anesthesia. 18(10):915-921.

Atkinson A, Abernethy D. 2007. Principles of Clinical Pharmacology. Reino Unido (UK): Elsevier Inc. 146, 149p.

Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov I y Bourne P. 2000. The Protein Data Bank. Nucleic Acids Research 28(1):235-242.

Blobaum A, Marnett L. 2007. Structural and functional basis of Cyclooxygenase inhibition. Journal of Medicinal Chemistry 50(7):1425-1441.

Botting R. 2000. Mechanism of action of acetaminophen: Is There a Cyclooxygenase 3? Clinical Infectious Diseases. 31(5): S202–S210.

Brunton L, Parker K. 2008. Goodman & Gilman’s Manual of Pharmacology and Therapeutics. USA: McGraw-Hill. 421, 428, 429, 436, 451p.

Cuesta S, Pilaquinga F, Meneses L. 2014. Modelamiento molecular de la interacción de ibuprofeno con las enzimas Ciclooxigenasa 1, 2 y el Citocromo P450 2C9. Revista Ecuatoriana de Medicina y Ciencias Biológicas 35(1 y 2):31-40

Dennington R, Keith TA, Millam JM. 2009. GaussView, Version 5, Semichem Inc., Shawnee Mission, KS

Frish MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, et al. 2003 GAUSSIAN 03W. Revision D.01. Gaussian Inc. Wallingford CT.

García J, Gómez J. 2000. Fisiopatología de la ciclooxigenasa-1 y ciclooxigenasa-2. Revista Española de Reumatología 27:27-33.

Graham G, Scott K. 2005. Mechanism of action of paracetamol. American Journal of Therapeutics. 12(1): 46-55

Hall V, Murillo N, Rocha M, Rodriguez E. 2001. Antiinflamatorios no esteroidales. Costa Rica: Centro Nacional de Información de Medicamentos, Instituto de Investigaciones Farmacéuticas, Universidad de Costa Rica. 7, 13,14p

Hinz B, Cheremina O, Brune K. 2008. Acetaminophen (paracetamol) is a selective cyclooxygenase-2 inhibitor in man. FASEB J. 22(2):383-90.

Hinz B, Brune K. 2012. Paracetamol and cyclooxygenase inhibition: is there a cause for concern? Annals of the Rheumatic Diseases. 71:20-25.

Józwiat M, Nowak J. 2014. Paracetamol: Mechanism of action, applications and safety concern. Acta Poloniae Pharmaceutica - Drug Research 71:11-23.

Laskowski R, Swindells M. 2011. LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling. 51(10):2778–2786

Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, Tang A, et al. 2014. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Research. 42(1):D1091- D1097

Meneses L, Cuesta S. 2015. Determinación computacional de la afinidad y eficiencia de enlace de antinflamatorios no esteroideos inhibidores de la Ciclooxigenasa-2, Revista Ecuatoriana de Medicina y Ciencias Biológicas 36(2):17-25

Ortiz V, López M, Arroita A, Aguilera L, Azkue J, Torre F, Isla A. 2007. Antiinflamatorios no esteroideos y Paracetamol en el tratamiento del dolor. Gaceta Medica de Bilbao. 104(4):148-155.

Pettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E, Ferrin TE. 2004. UCSF Chimera--a visualization system for exploratory research and analysis. Journal of Computational Chemistry. 25(13):1605-1612.

Schrödinger .2014. The PyMOL Molecular Graphics System. Version 1.2r3pre. LLC.

The Scripps Research Institute [Internet]. 2013. Autodock; [cited 2017 Feb 15]. Available from: http://autodock.scripps.edu/

Trott O, Olson A. 2010. Autodock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry. 31:455-461.

Wishart D, Knox C, Guo A, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M. 2008. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Research. 36(Database issue):D901-D906.