Growth and in vitro antagonism of Trichoderma spp., in the control of Moniliophthora roreri, by means of mathematical models

Main Article Content

Johan Reinaldo Párraga Vélez
Álvaro Gustavo Cañadas López
Diana Yasbeth Rade Loor
Peiro Cristóbal Fajardo Navarrete
Joffre Alberto Andrade Candell
Marcos Zambrano Zambrano
Christian Wehenkel

Abstract

The mathematical models allow to describe the growth and antagonism curve of Trichoderma isolates against pathogens though a three parameters sigmoidal functions. The objective of the present research was to evaluate the growth of native Trichoderma spp., isolates in vitro and to determine their antagonistic by inhibiting Moniliphthora roreri by mathematical modeling. This research was conducted at the Portoviejo Experimental Station (EEP) of the National Institute of Agricultural Research (INIAP). 12 Trichoderma spp., isolates were collected, isolated and their growth and antagonism was tested under in vitro conditions against M. roreri. The Hossfeld function adequately describes the growth function of Trichoderma spp., and isolated A1, A10 and A4 were shown as the highest growth. Each isolates presented different parameters between each of them. Isolates A1, A6 and A2 were exhibited greater antagonism against M. roreri. The parameter a of the Verhulst model represents the PDA culture medium carrying capacity. In this study were established an inversely proportional ratio, the lower values of parameter a the Verhults function greater is the antagonism against M. roreri.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Párraga Vélez JR, Cañadas López Álvaro G, Rade Loor DY, Fajardo Navarrete PC, Andrade Candell JA, Zambrano Zambrano M, Wehenkel C. Growth and in vitro antagonism of Trichoderma spp., in the control of Moniliophthora roreri, by means of mathematical models. REMCB [Internet]. 2017Nov.9 [cited 2024Jul.3];38(2):87-6. Available from: https://remcb-puce.edu.ec/remcb/article/view/548
Section
Artículos Científicos

References

Aime MC, Phillips-Mora W. 2005. The causal agents of witches’ broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae. Mycologia 97(5): 1012-1022

Bailey R, Clutter J. 1974. Base-age invariant polymorphic site curves. Forest Science 20(2): 155–159.

Bateman P, Hidalgo E, García J, Arroyo C, Ten Hoopen G, Adonijah V, Krauss U. 2005 Application of chemical and biological agents for the management of frosty pod rot (Moniliophthora roreri) in Costa Rica cocoa (Theobroma cacao). Annals of Applied Biology 147(2):129-138.

Begoude B, Lahlali R, Friel D, Tondje P, Jijakli M. 2007. Response surface methodology study of the combined effects of temperature, pH, and aw on the growth rate of Trichoderma asperellum. Journal of Applied Microbiolgy 103(4):845-854.

Boddy L, Wells J, Culshaw C, Donnelly D. 1999. Fractal analysis in studies of mycelium in soil. Geoderma 88(3):301–328.

Bortz J. 2010. Statistik für Sozialwissenschaftler. 7 Auflage. Springer-Verlag. Frankfurt Deutschland. 882 p

Cañadas A, Vilčko F, Rade D, Zambrano C, Molina C. 2014. Hacia una descripción de fuste para Laurel (Cordia alliodora) en sistemas agroforestales, bosque protector Sumaco. Avance en Ciencias e Ingeniería 6(1):24-31.

Cañadas A, Rade D, Domínguez JM, Murillo I, Molina C. 2016a. Modelación Forestal como Innovación Tecnológica para el Manejo Silvicultural y Aprovechamiento Económico de la Balsa, Región Costa-Ecuador. Ed. Abya Yala, Quito-Ecuador. 173 p.

Cañadas A, Rade D. Fernández G, Domíngues JM, Murillo I, Molina, C. 2016b: Ecuaciones generales diámetro-altura para Ochroma pyramidale, Región Costa-Ecuador. Bosque Latitud Cero 6(1):1-14.

Correa Á, Castro M, Coy J. 2014. Estado de la moniliasis del cacao causado por Moniliophthora roreri en Colombia. Acta Agronómica 63(4):388-399.

Cross D, Kenerley C. 2004. Modelling the growth of Trichoderma virens with limited sampling of digital images. Journal of Applied Microbiology 97(3):486-494.

Chaverri P, Samuels G. 2004. Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): species with Green ascospores. Studies in Mycology 48:110-116.

Evans H, Holmes K, Thomas S. 2003. Endophytes and mycoparasites associated with an indigenous forest tree, Thebroma gileri, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycological Research 2(2):149-160.

Evans H. 2007. Cacao diseases – the trilogy revisited. Phytopathology 97(12):1640-1643.

Holmes K, Schroers H, Thomas S, Evans H, Samuels G. 2004. Taxonomy and bio control potential of a new species of Trichoderma from Amazon basin of South America. Mycological Progress 3(3):199-210.

Krauss U, Soberanis W. 2001. Bio control of cocoa pod diseases with mycoparasite mixtures. Biological Control 22(2):149-158

Liu J, Sui Y, Wisniewski M, Droby S, Liu Y. 2013. Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. International Journal of Food Microbiology 167(2):153-160.

Loor G, Fouet O, Lemainque A, Pavek S, Boccara M, Argout X, Amores F, Courtois B, Marie Risterucci A, Lanaud C. 2013. Insight into the Wild Origin, migration and domestication history of the fine flavor national Theobroma cacao L. variety from Ecuador. Plos One, 8(2): 10-1371. /annotation/2357f0f1-7dc3-4781-afb0-29a8ce56b3f0.doi: 10.1371/annotation/2357f0f1-7dc3-4781-afb0-29a8ce56b3f0

Melo C, Hollander G. 2013. Unsustainable development: Alternative food networks and the Ecuadorian Federation of Cacao Producers, 1995-2010. Journal of Rural Studies 32:251- 63

Párraga J, Cañadas A, Fajardo P, Rade D, Andrade J. 2017. Caracterización in vitro de Trichoderma spp. y modelo matemático de su antagonismo en presencia de Moniliophthora perniciosa. Revista Ecuatoriana de Medicina y Ciencias Biológicas 38(1):25-34

Philips M, Aime M, Wilkinson M. 2007. Biodiversity and biogeography of the cacao (Theobroma cacao) pathogen Monilophthora roreri in tropical America. Plant Pathology 56(6):911-22.

Prosser J. 1993. Growth kinetics of mycelial colonies and aggregates of ascomycetes. Mycological Research 97(5):513-528.

Richards F. 1959. A flexible growth function for empirical use. Journal of Experimental Botany 10:290-300

Samuels G, Suárez C, Solís K., Holmes S, Ismaiel A, Evans H. 2006. Trichoderma theobromicola and T. paucisparum: two new species insolated form cacao in South America. Mycological Research 110(4):381-392.

Sánchez F, Garcés F. 2012. Moniliophthora roreri (Cif y Par). En el cultivo de cacao. Scientia Agropecuaria 3(3):249-258.

SAS INSTITUTE INC, 2013. SAS/STATTM User’s guide. Release 10.0 Edn. Cary. NC. USA.

Suárez L, Cabrales C. 2008. Identificación de las especies de cepas nativas de Trichoderma spp., y Bacillus spp., y evaluación de su potencial antagonista in vitro frente al hongo fitopatógeno nativo M. roreri en el departamento de Norte de Santander. Revista de la Universidad Francisco de Paula Santander 13(1):45-56.

Torres E, Iannacone J, Gómez H. 2008. Biocontrol del moho foliar del tomate Cladosporium fulvum empleando cuatro hongos antagonistas. Bragantia 67(1):169-178.

Verhulst P. 1838. Notice sur la loi que la population suit dans suit dans son accroissement. Correspondences Mathematiques et Physiques 10:113-121.

Zeide B. 1993. Analysis of growth equations. Forest. Science 39(3):594-616.