Biological control of slugs with the rhabditid nematode Phasmarhabditis hermaphrodita

Main Article Content

Aní­bal Franco Cóndor Golec

Abstract

This literature review is based on the biological control of slugs using the nematode Phasmarhabditis hermaphrodita. It describe the effectiveness and mode of action according to its environment. Also the method of application and doses, compared to chemical molluscicides and the  study of the bacteria associated to the nematode. P. hermaphrodita seems to prefer soil moisture and infect young slugs of the Deroceras species. Partial nematode applications are less expensive and should be done in slug resting áreas.There are other nematodes species for slug control but with no effectiveness. More research is still needed to prove when nematode P. hermaphrodita's action stage is, because it has not been so effective for the control of many other slug species.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Cóndor Golec AF. Biological control of slugs with the rhabditid nematode Phasmarhabditis hermaphrodita. REMCB [Internet]. 2020May25 [cited 2024Jul.3];41(1). Available from: https://remcb-puce.edu.ec/remcb/article/view/836
Section
Artículos de Revisión

References

Cross JV, Easterbrook AM , Crook, AM, Crook, D, Fitzgerald, JD, Innocenzi, PJ, Jay, CN, Solomon, MG. 2001. Review: natural enemies and biocontrol of pests of strawberry in northern and central Europe. Biocontrol Science and Technology 11: 165-216.

Dörler D, ScheucherA, Zaller J. 2019. Efficacy of chemical and biological slug control measures in response to watering and earthwormsScientific Reports [Internet]. [Cited 2019 Jun 16]; 9: 2954. Available from: https://www.nature.com/articles/ s41598-019-39585-5

El-Danasoury H, Iglesias-Piñeira J 2017. Performance of the slug parasitic nematode Phasmarhabditis hermaphrodita under predicted conditions of winter warming. Journal of Pesticide Science 42(2): 62-66.

Ester A, Huiting HF, Molendijk, LPG,Vlaswinkel MET. 2003. The rhabditid nematode Phasmarhabditis hermaphrodita Schneider as a potential biological agent to control field slugs Deroceras reticulatum (Muller) in Brussels sprouts. In: Slug and Snail Pests in agriculture, BCPC Symposium Proceedings, Vol. 80. p. 313-318.

Ester A, Geelen PMTM.1996. Integrated control of slugs in a sugar beet crop growing in a rye cover crop. In: Slug and Snail Pests in agriculture, BCPC Symposium Proceedings, Vol 66, pp. 445-172.

Ester A, van Rozen K, Molendijk LPG. 2003. Field experiments using the rhabditid nematode Phasmarhabditis hermaphrodita salt as control measures against slugs in green asparagus. Crop Protection 22: 689-695.

Frank T. 1998. The role of different slug species in damage to oilseed rape bordering on sown wildflower strips. Annals of Applied Biology 133: 483-493.

Glen DM, Wilson MF, Wiltshire CW. 1989. Effects of seed-bed conditions on slug numbers and damage to winter wheat in a clay soil. Annals of Applied Biology 115: 177-190.

Glen DM, Wilson MJ, Hughes L, Cargeeg, P, Hajjar A. 1996. Exploring and exploiting the potential of the rhabditid nematode Phasmarhabditis hermaphrodita as a biocontrol agent for slugs. Integrated control of slugs in a sugar beet crop growing in a rye cover crop. In: Slug and Snail Pests in agriculture, BCPC Symposium Proceedings, Vol 66, p. 271-280.

Grewal SK,Grewal PS. 2003. Effect of osmotic desiccation on longevity and temperature tolerance of Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae). Journal of Parasitology 89 (3): 434-438.

Grewal P S, Grewal SK, Taylor RAJ, Hammond RB. 2001. Application of molluscicidal nematodes to slugs shelters: a novel approach to economic biological control of slugs. Biological control 22: 72-80.

Grubisic D, Ostrec L, Dusak I. 2003. Biological control of slugs in vegetable crops in Croatia. In: Slug and Snail Pests in agriculture, BCPC Symposium Proceedings, Vol 80, pp. 115-120.

Hass B, Glen DM, Brain P, Hughes LA. 1999. Targeting biocontrol with the slug-parasite nematode Phasmarhabditis hermaphrodita in slug feeding areas: a model study. Biocontrol Science and Technology 9: 587-598.

Huiting H, Ester A. 2001. Slakken moelijk uit spruiten te houden. Groenten Fruit 30: 34-35.

Iglesias J, Castillejo J, Castro R.2000. Field test using the nematode Phasmarhabditis hermaphrodita for biocontrol of slugs in Spain. Biocontrol Science and Technology 11: 93-98.

Kaya H. 2001. Molluscicidal nematodes for biological control of pest slugs [Internet]. Slosson report 2000-2001. University of California. USA. [Cited 2020 May 24]. Available from: Slosson. ucdavis.edu/ newsletters/Kaya_ 200129028. pdfMcKemey AR, Glen DM, WiltshireCW, Symondson WOC. 2006. Molecular quantification of slug density in the soil using monoclonal antibodies. Soil Biology and Biochemistry 38(9): 2903-2909.

MacMillan K, Haukeland S, Rae R, Young I, Crawford J, Hapca S, Wilson M. 2009. Dispersal patterns and behaviour of the nematode Phasmarhabditis hermaphrodita in mineral soils and organic media. Soil Biology and Biochemistry 41(7): 1483-1490.

Nermut J, Půža ,Mráček Z. 2014. The effect of different growing substrates on the development and quality of Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae). Biocontrol Science and Technology 24(9): 1026-1038.

Port GR, Collier RH, Symondson WOC, Bohan, DA, Glen DM. 2003. Progress in improving the prediction and integrated control of slug damage in horticultural crops. In: Slug and Snail Pests in agriculture, BCPC Symposium Proceedings, Vol. 80.p. 301-306.

South A. 1992. Terrestrial slugs, biology, ecology and control, London: Chapman and Hall. 428 p.

Speiser B, Andermatt M. 1996. Field trials with Phasmarhabditis hermaphrodita in Switzerland. In: Slug and Snail Pests in agriculture, BCPC Symposium Proceedings. Vol. 66.p.419-424.

Speiser B, Zaller JG, Neudecker A. 2001. Size- specific susceptibility of the pest slugs Deroceras reticulatum and Arion lusitanicus to the nematode biocontrol agent Phasmarhabditis hermaphrodita. Biocontrol 46: 311-320.

Speiser B. Glen D, Piggot S, Ester A, Davies K, Castillejo J, Coupland J. 2001. Slug damage and control of slugs in horticultural crops. Project: Novel technologies for integrated control of slug damage in key horticultural crops. [Internet] Partners: LARS, MicroBio Ltd., Applied Plant Research, IACR, FiBL, Department of Animal Biology - University of Santiago, Farm Forest Research. [Cited 2019 Jun 14]. Available from: Https://core.ac.uk/download/ pdf/10919097.pdf

Tan L Grewal S. 2001. Pathogenicity of Moraxella osloensis, a bacterium associated with the nematode Phasmarhabditis hermaphrodita, to the slug Deroceras reticulatum. Applied and Environmental Microbiology 67(11): 5010-5016.

Wilson MJ, Glen DM George SK. 1993. The rhabditid nematode Phasmarhabditis hermaphrodita as a potential biological control agent for slugs. Biocontrol Science and Technology. 3: 503-511.

Wilson MJ, Hughes LA., Jefferies D Glen DM. 1999. Slugs (Deroceras reticulatum and Arion ater agg.) avoid soil treated with the rhabditid nematode Phasmarhabditis hermaphrodita. Biological control 16: 170-176.

Wilson MJ, Glen DM, George SK Hughes LA. 1995. Biocontrol of slugs in protected lettuce using the rhabditid nematode Phasmarhabditis hermaphrodita. Biocontrol Science and Technology 5: 233-242.

Wilson M Gaugler R (n.d.). Phasmarhabditis hermaphrodita (Rhabditida: Rhabditidae). [Internet].In: Biological Control: A guide to natural enemies in North America. Anthony Shelton editor. Cornell University. USA. [Cited 2019 Jun 16]. Available from: https://biocontrol.entomology. cornell.edu/pathogens/phasmarhabditis.php .

Wilson M Rae R. 2015. Phasmarhabditis hermaphrodita as a Control Agent for Slugs.

[Internet]. In: Nematode Pathogenesis of Insects and Other Pests. Sustainability in Plant and Crop Protection. Raquel Campos Herrera editor. Springer International Publishing. Switzerland. [Cited 2019 Jun 16]. Available from: https://link.springer.com/ chapter/10.1007%2F978-3-319-18266-7_21.