Preferences Inhibition of carbapenemase-carrying enterobacteriaceae with peptide secretions from native Ecuadorian amphibians.

Main Article Content

Camila Cilveti
Miryan Rivera
Mercedes Rodríguez Riglos
Iliana Alcocer

Abstract

Bacterial resistance to antibiotics represents a major public health problem, especially resist the one produced by betalactamases enzymes, which block an important antibiotic group, the betalactamic antibiotics. These antibiotics are widely used for the treatment of human infections. Extended spectrum betalactamase producing bacteria (ESBL) are of the greatest concern, since they are an important group in the etiology of both severe and non-severe infections. Carbapenems are betalactamic antibiotics for the treatment of ESBL bacterial infections and have become inefficient due to emerging carbapenem resistant strains. Given the lack of therapeutic options, the aims of this study were the molecular characterization of carbapenemase producing bacteria and possible inhibition of this enzyme with peptid secretions of a native Ecuadorian bufonid frog (Anura: Bufonidae). Fifty- seven carbapenem resistant enteric bacteria from hospitalized patients were characterized. The blaKPC, blaGES, blaVIM and blaIMP genes were molecularly identified from bacteria. The most prevalent genes were blaKPC y blaGES, followed by blaVIM and blaIMP. Carbapenemase activity from every isolate was inhibited by the bufonid peptide. The minimal inhibitory concentration was 250 μg/ml for Klebsiella pneumoniae, Serratia marcescens, Enterobacter aerogenes and Escherichia cloacae, 125 μg/ml for Morganella morganii, 62.5 μg/ml for Klebsiella oxytoca and Serratia rubidaea and 31.3 μg/ml for Escherichia coli. The betalactamase genes present in motile genetic elements facilitate the spread of these genes in bacterial populations. It is important to analyze new antimicrobial compounds to combat the spread of antibiotic-resistant bacterial pathogens.


 

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Cilveti C, Rivera M, Rodríguez Riglos M, Alcocer I. Preferences Inhibition of carbapenemase-carrying enterobacteriaceae with peptide secretions from native Ecuadorian amphibians. REMCB [Internet]. 2017Aug.14 [cited 2024Jul.3];34(1-2):85-8. Available from: https://remcb-puce.edu.ec/remcb/article/view/237
Section
Artículos Científicos

References

Bush K. 2010. Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Current Opinion in Microbiology, 13(5): 558–564. doi:10.1016/j.mib.2010.09.006.

Caicedo A. 2007. Análisis de secreciones peptídicas de anfibios ecuatorianos con pruebas de susceptibilidad en bacterias patógenas. Tesis de Licenciatura en Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.

Cho J, Sung B y Kim S. 2009. Buforins: Histone H2A-derived antimicrobial peptides from toad stomach. Biochimia et Biophysica Acta (BBA)-Biomembranes, 1788(8): 1564–1569.

Chuang PH. 2012. Evaluación de la actividad anticancerígena del extracto peptídico crudo de una especie perteneciente a la familia Hylidae en leucemias. Tesis de Licenciatura en Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.

Colón EF, García ZB, Balderrama JZ, Zabalaga S, Dávalos JP, Espinoza F y Peña E. 2009. Determinación de carbapenemasas y su relación con estructuras genéticas en aislamientos clínicos de Acinetobacter baumannii de hospitales de la ciudad de Cochabamba. Biofarbo, 17(1): 30–38.

Del Río J, Arango R, Buritaca C y Estrada, I. 2007. Producción Bacteriana de Betalactamasas de Espectro Extendido en Pacientes de la Unidad de Cuidados Intensivos del Hospital de Caldas. Biosalud, 6: 69–83.

Findlay B, Zhanel GG y SchweiFraimow HS y Tsigrelis C. 2011. Antimicrobial resistance in the intensive care unit: mechanisms, epidemiology, and management of specific resistant pathogens. Critical Care Clinics, 27(1): 163–205. doi:10.1016/j.ccc.2010.11.002.

Hancock REW y Chapple DS. 1999. Peptide Antibiotics, 43(6): 1317–1323zer F. 2012. Investigating the antimicrobial peptide “window of activity” using cationic lipopeptides with hydrocarbon and fluorinated tails. International Journal of Antimicrobial Agents, 40(1): 36–42. doi:10.1016/j.ijantimicag.2012.03.013.

Jared C, Antoniazzi MM, Jordão A, Silva J, Greven H y Rodrigues M. 2009. Parotoid macroglands in toad (Rhi-nella jimi): their structure and func-tioning in passive defense. Toxicon: Official Journal of the International
Society on Toxicology, 54(3): 197–207. doi:10.1016/j.toxicon.2009.03.029.

Jenssen H, Hamill P y Hancock R. 2006. Peptide antimicrobial agents. Clinical Microbiology Reviews, 19(3): 491–511. doi:10.1128/CMR.00056-05.

Servicio de Antimicrobianos del INEI “Dr Carlos G. Malbrán” 2010. Diseminación de KPC en la Argentina. Informe del Programa Nacional de Control de Calidad en Bacteriología. INEI “Dr Carlos G. Malbrán”, Buenos Aires, Argentina.

Nguyen M, Eschenauer G, Bryan M, O’Neil K, Furuya E, Della-Latta P y Kubin C. 2010. Carbapenem-resistant Klebsiella pneumoniae bacteremia: factors correlated with clinical and microbiologic outcomes. Diagnostic Microbiology and Infectious Diseases, 67(2): 180–184. doi:10.1016/j.diagmicrobio.2010.02.001.

Papo N y Shai Y. 2003. Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes? Peptides, 24(11): 1693–1703. doi:10.1016/j.peptides.2003.09.013.

Rollins-Smith L, King JD, Nielsen PF, Sonnevend A y Conlon JM. 2005. An antimicrobial peptide from the skin secretions of the mountain chicken frog Leptodactylus fallax (Anura: Leptodactylidae). Regulatory Peptides, 124(1–3): 173–178. doi:10.1016/j.regpep.2004.07.013.

Rudi J, Muller D, Siano A, Sminoetta A y Tonarelli G. 2010. Péptido antimicrobiano quimérico de dermaseptina-s1 y tigerinina-1: estructura secundaria y selectividad hacia membranas. Revista FABICIB, 14: 148–161.

Sánchez-Otero J. 2010. Introducción al Diseño Experimental. Innovación Digital. Quito, Ecuador.

Shai Y. 2002. Mode of Action of Active Antimicrobial Peptides. Biopolymers, 66: 236–248.

Takahashi D, Shukla SK, Prakash O y Zhang G. 2010. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie, 92(9): 1236–1241. doi:10.1016/j.biochi.2010.02.023.

Tennessen J y Blouin MS. 2008. Balancing selection at a frog antimicrobial peptide locus: fluctuating immune effector alleles? Molecular Biology and Evolution, 25(12): 2669–2680. doi:10.1093/molbev/msn208.

Torcato IM, Castanho M y Henriques ST. 2012. The Application of Biophysi-cal Techniques to Study Antimicrobial Peptides. Spectroscopy: An Inter-national Journal, 27(5–6): 541–549 doi:10.1155/2012/460702.

Urbán E, Nagy E, Pál T, Sonnevend A y Conlon JM. 2007. Activities of four frog skinderived antimicrobial peptides (temporin-1DRa, temporina and the melittin-related peptides AR-23 and RV-23) against anaerobic bacteria. International Journal of Antimicrobial Agents, 29(3): 317–321. doi:10.1016/j.ijanti-micag.2006.09.007.
Walther-Rasmussen J y Hoiby N. 2007. Class A carbapenemases. Journal of Antimicrobial Activity, 60: 470–482.

Wang G. 2010. Antimicrobial Peptides: Discovery, Design ad Novel Therapeutic Strategies. CAB International. Massachusetts. 230 pp.

Wiegand I, Hilpert K, y Hancock REW. 2008. Agar and Broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2): 163–175.

Zairi A, Tangy F, Ducos-Galand M, Alonso JM y Hani K. 2007. Susceptibility of Neisseria gonorrhoeae to antimicrobial peptides from amphibian skin, dermaseptin, and derivatives. Diagnostic Microbiology and Infectious Disease, 57: 319–324.

Zurita J. 2012. Resistencia Bacteriana en el Ecuador. Centro de Publicaciones PUCE, Quito, Ecuador. 143 pp.