In vitro determination of the nematicidal and nematicostatic potential of Pleurotus ostreatus (Jacq. Ex Fr.) on J2 larvae of Globodera pallida (Stone)

Main Article Content

Maria Belén Arteaga
Carlos A Soria
Marí­a Eugenia Ordoñez

Abstract

Globodera pallida generates yield losses of up to 30 % in Ecuadorian potato crops.  Chemical control of this pest involves risks of toxicity to the soil and to the farmer. In this study, the nematicidal and nematostatic in vitro potential of the mycelium in water agar and culture broth filtrates of Pleurotus ostreatus in Sabouraud media on G. pallida J2 larvae was determined, as a control alternative. Regarding the effect of the mycelium, a greater percentage of immobile nematodes (34 %) was observed after 24 hours of exposure, and the nematicidal effect was more pronounced after 72 hours exposure with a mortality of 80.3 %. There was no relationship between the percentage of immobile J2, exposure time and the concentration of the filtrate in the nematostatic activity; however, the 100 % filtrate concentration and 8 h treatment exhibited a higher percentage of immobile nematodes (65.2 %). The nematicidal effect of the filtrate with a concentration of 100 % and 24 hours of exposure time, was the most effective with a larvae mortality rate of 41.6 %. The mycelium and filtrate of P. ostreatus showed nematostatic and nematicidal in vitro activity against G. pallida larvae.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Arteaga MB, Soria CA, Ordoñez ME. In vitro determination of the nematicidal and nematicostatic potential of Pleurotus ostreatus (Jacq. Ex Fr.) on J2 larvae of Globodera pallida (Stone). REMCB [Internet]. 2020May25 [cited 2024Jul.3];41(1). Available from: https://remcb-puce.edu.ec/remcb/article/view/837
Section
Artículos Científicos

References

Arntzen FK, Visser JHM, Hoogendoorn, J. 1993. Hatching of Globodera pallida juveniles by diffusate of potato genotypes, differing in tolerance to G. pallida. Annals of Applied Biology. 123(1):83- 91.

Aguilar Marcelino L, Sánchez J, Mendoza de Gives P. 2017. Uso biotecnológico de productos obtenidos a partir de Pleurotus spp. en el control de nematodos parásitos de importancia pecuaria. La biología, el cultivo y las propiedades nutricionales y medicinales de las setas Pleurotus spp. (1):297- 309.

Degenkolb T, Vilcinskas A. 2016. Metabolites from nematophagous fungi and nematicidal natural products from fungi as alternatives for biological control. Part II: metabolites from nematophagous basidiomycetes and non-nematophagous fungi. Applied Microbiology and Biotechnology. 100(9):3813–3824.

Farrer LA, Phillips MS. 1983. In vitro hatching of Globodera pallida in response to Solanum vernei and S. tuberosum × S. vernei hybrids. Revue de nématologie. 6(2):165-169.

Genier HA, De Freitas Soares EF, De Queiroz, JH, De Souza Gouveia A, Araújo JV, Braga FR, Kasuya MCM. 2015. Activity of the fungus Pleurotus ostreatus and of its proteases on Panagrellus sp. larvae. African Journal of Biotechnology. 14(17):1496–1503.

Heydari R, Pourjam E, Mohammadi Goltapeh E. 2006. Antagonistic effect of some species of Pleurotus on the root-knot Nematode, Meloidogyne javanica in vitro. Plant Pathology Journal. 5(2):173–177.

Huang X, Zhang K, Yu Z, Li G. 2015. Microbial control of phytopathogenic nematodes. En B. Lugtenberg (Ed.). Principles of Plant-Microbe Interactions. pp. 155–164.

Kwok OCH, Plattner R, Weisleder D, Wicklow DT. 1992. A nematicidal toxin from Pleurotus ostreatus NRRL 3526. Journal of chemical ecology, 18(2):127-136.

Li G, Zhang K. 2014. Nematode-toxic fungi and their nematicidal metabolites. In Nematode-Trapping Fungi; Zhang, K., Hyde, K., Eds. Dordrecht, The Netherlands. pp 313−375.

López Torres ME. 2013. Evaluación de genes de resistencia a virus y nematodos mediante marcadores moleculares en Solanum tuberosum ssp. tuberosum del banco de germoplasma de papas de la Universidad Austral de Chile (No. 635.217/ L864) Tesis de maestría.

Meyer SL, Huettel RN, Liu XZ, Humber RA, Juba J, Nitao JK. 2004. Activity of fungal culture filtrates against soybean cyst nematode and root- knot nematode egg hatch and juvenile motility. Nematology, 6(1):23-32.

Nayar JK, Crowder CG, Knight JW. 1991. In vitro development of Brugia pahangi and Brugia malayi in cultured mosquito thoraces. Acta tropica. 48(3):173-184.

Palizi P, Goltapeh EM, Pourjam E, Safaie N. 2009. Potential of oyster mushrooms for the biocontrol of sugar beet nematode (Heterodera schachtii). Journal of Plant Protection Research. 49(1):27–33.

Regaieg H, Ciancio A, Raouani NH, Grasso G, Rosso L. 2010. Effects of culture filtrates from the nematophagous fungus Verticillium leptobactrum on viability of the root-knot nematode Meloidogyne incognita. World J. Microbiol. Biotechnol. 26:2285−2289.

Revelo J. 2003. Manejo integrado del nematodo quiste de la papa (G. pallida) en Ecuador. XXXV Reunión Anual de la Organización de Nematólogos de los Trópicos Americanos. 27-28. Guayaquil.

Sierra J. 2014. Evaluación de la acción nematicida in vitro e in vivo de especies de Pleurotus spp., sobre los nematodos Meloidogyne spp. y Radopholus spp. asociados a los cultivos de tomate y plátano. Universidad Nacional de Colombia, Colombia. Tesis de Maestría.

Xiang N, Lawrence KS. 2016. Optimization of in vitro techniques for distinguishing between live and dead second stage juveniles of Heterodera glycines and Meloidogyne incognita. PloSone. 11(5):e0154818.