Population genetic study of Polylepis pauta and Polylepis serícea in Pichincha using molecular markers SSRs

Main Article Content

Rosa Andrade
Mónica Jadán
Claudia Segovia Salcedo

Abstract

Polylepis forests are one of the most vulnerable centers of Andean diversity that have been affected by anthropogenic impacts. In Ecuador there are no studies of genetic structure in this genus, which is fundamental information for genetic conservation.


This study analyzed two species with taxonomic uncertainty, P. pauta and P. sericea, in three populations: Yanacocha, Mojanda, and Cayambe-Coca National Park. Each population consisted of three subpopulations with a total of 142 individuals. DNA was extracted using the CTAB method and was amplified with 5 SSR primers designed for this genus. Eighteen alleles were detected between the two species. Analysis for genetic structure detected two groups. The first one contained the Cayambe-Coca and Mojanda populations and Yanacocha was in the second group. The observed heterogeneity (Ho) for the Cayambe-Coca and Mojanda population was 0.576, and 0.299 for the Yanacocha population. In contrast, the expected heterogeneity (He) was 0.605 and 0.524 for the populations in Cayambe-Coca and Mojanda and Yanacocha. The biggest difference between these statistics was in the Yanacocha population. This could be attributable to one allele selection or inbreeding. Through differentiation analysis it was probed that both population established are different p=0.00072 (α=0.05). The largest source of variation corresponds to within populations differences (AMOVA). Clustering analysis detected a significant clustering in a subpopulation from Mojanda (Moj1). This may be due to a hybrid origin (P.pauta x P. incana) of this population. Correlation between genetic and geographic distance was not detected. Through this study it was possible to differentiate both species; therefore, SSRs were powerful markers to detect genetic diversity, differentiation, and population structure in this genus.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Andrade R, Jadán M, Segovia Salcedo C. Population genetic study of Polylepis pauta and Polylepis serícea in Pichincha using molecular markers SSRs. REMCB [Internet]. 2017Aug.10 [cited 2024Jul.3];34(1-2):27-5. Available from: https://remcb-puce.edu.ec/remcb/article/view/232
Section
Artículos Científicos

References

Aragundi S, Hamrick J y Parker K. 2011. Genetic insights into the historical distribution of Polylepis pauta (Rosaceae) in the northeastern Cordillera Oriental of Ecuador. Conservation Genetics, 12:607-618.

Doyle J J y Doyle J L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19: 11-15.

Evanno G, Regnaut S y Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14: 2611-2620.

Falush D, Stephens M y Pritchard J. 2007. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes,7: 574–578

Fjeldsa J y Kessler M. 1996. Conserving the biological diversity of Polylepis woodlands of the highland of Peru and Bolivia. A Contribution to Sustainable Natural Resource Management in the Andes. Nordeco. Dinamarca.

Gareca E, Breyne P, Vandepitte K, Chaill J, Fernandez M y Honnay O. 2013. Genetic diversity of Andean Polylepis(Rosaceae) woodlands and inferences regarding their fragmentation history. Botanical Journal of the Linnean Society,172: 544-554

Hamrick J, Linhart Y y Mitton J. 1979. Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Annual Review of Ecology, Evolution, and Systematics, 10:173–200.

Hensen I, Teich I, Hirsch H, Wehrden H y Renison D. 2011. Range-wide genetic structure and diversity of the endemic tree line species Polylepis australis (Rosaceae) in Argentina. American Journal of Botany,98: 1825–1833.

Julio N, Dueñas J, Reninson D y Hensen I. 2011. Genetic Structure and diversity of Polylepis australis (Rosaceae) tree populations from central Argentina: Implications for forest conservation. Silvae Genetica, 60: 55–56.

Julio N, Sobral A, Dueñas J, Di Rienzo J, Renison D y Hensen I. 2008. RAPD and ISSR markers indicate diminished gene flow due to recent fragmentation of Polylepis australis woodlands in central Argentina. Biochemical Systematics and Ecology, 36:329–335.


Kerr M. 2004. A phylogenetic and biogeographic analysis of Sanguisorbeae (Rosaceae) with emphasis on the Pleistocene radiation of the high Andean genus Polylepis. Tesis de Doctorado, University of Maryland.

Khanuja S, Shasany A, Darokar M y Kumar S. 1999. Rapid isolation of DNA from dry and fresh simples of plants producing large amounts of secondary metabolites and essential oils. Plant Molecular Biology Reporter, 17: 1–7.

Lynch M y Milligan B. 1994. Analysis of population genetic structure with RAPD markers. Molecular Ecology,3: 91–99.

Loveless M, y Hamrick J. 1984. Ecological determinants of genetic structure in plant populations. Annual Review of Ecology, Evolution and Systematics, 15: 65–95.

Mecham J. 2001. Causes and consequences of deforestation in Ecuador. Centro de In-vestigación de los Bosques Tropicales (CIBT). Página de Internet: www.rain-forestinfo.org.au/projects/jefferson.htm. Consultada: diciembre-2012

Meirmans P y Hedrick P. 2011. Assessing population structure: Fst and related measures. Molecular Ecology Resources, 11: 5–18.

Nybom H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology, 13:1143–1155.

Ochoa V, Proaño K y Jiménez P. 2008. Genética poblacional de dos especies de plantas leñosas del páramo ecuatoriano con miras a un proceso de rehabilitación. Tesis de pregrado, Escuela Politécnica del Ejército. Sangolquí, Ecuador.

Peakall R y Smouse P E. 2006. Population genetic software for teaching and research, Molecular Ecology Notes, 6(1):288–295.

Porebski S, Bailey L y Baum B. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharides and polyphenol components. Plant Molecular Biology Reporter,15: 8–15.

Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S y Rafalski A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2: 225–238.

Pritchard J, Stephens M y Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics,155: 945–959.

Romoleroux K y Pitman N. 2004. IUCN Red List of Threatened Species. Página de Internet: http://www.iucnredlist.org/details/38119/0. Consultada 15-julio-2012.

Romoleroux K. 1996. Rosaceae-Flora of Ecuador. Denmark: Herbario, Depar-tamento de Biología, Pontificia Uni-versidad Católica del Ecuador.

Segovia C, Quijia P, Proaño K, Soltis P y Soltis D. 2010. La Desaparición de los Bosques de Polylepis (Rosaceae: Rosoideae: Sanguisorbeae) en el Ecuador: Hibridización y las implicaciones para su manejo y conservación. Ecociencia. Quito

Schmidt-Lebuhn A, Kessler M y Kumar M. 2006. Promiscuity in the Andes: Species Relationships in Polylepis(Rosaceae,Sanguisorbeae) Based on AFLP and Morphology. Systematic Botany, 31: 547–559.

Selkoe K y Toonen R. 2006. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecology Letters, 9:615–629.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M y Kumar S. 2011. Mega5: Molecular Evolutionary Genetics Analysis using likelihood, distance and parsimony methods. Molecular Biology and Evolution, 28: 2731–2739.

White T, Adams T y Neale D. 2007. Forest Genetics. Primera edición. CAB International. Massachusetts. 682 pp.