Cellulases present in the digestive tract of the shrimp Litopenaeus vannamei

Main Article Content

Claudia Segovia Salcedo
Alexandra Narváez Trujillo
Fernando Espinoza Fuentes

Abstract

Cellulases have been classified as endoglucanases. This is the only enzyme capable of degrading cellulose, which gives an immense importance in the processes of the food chain, being cellulose the most abundant source of carbon on earth. Cellulases and related enzymes are widely used in various industrial processes. Cellulose is used as a nutritional source for several organisms, initially it was thought that only microorganisms may degrade this polymer however cellulases have been reported in many animal groups. In this paper, we present the preliminary identification and characterization of cellulases in the shrimp Litopenaeus vannameiduring its larval and adult stages. In adults and f different sub-stages of L. vannamei were collected in culture tanks in comercial shrimp farms in the Santa Elena Peninsula and Muisne, in the provinces of Esmeraldas and Santa Elena, respectively. The hepatopancreas, larval stages and intestines were homogenized in a Braun-Melsungen homogenizer. Carboxymethyl cellulose (CMC) of medium viscosity was used as a substrate. To measure enzymatic activity 3,5 dinitrosalicylic acid (DNS) was added. The cellulase activity was determined based on the amount of reducing groups released. To try to determine the presence of endogenous cellulases, that is produced by shrimp, samples were submitted to antibiotics and later assayed. In sub-stage zoeal 3, a cellulase with an optimal pH range between pH 6.5 and pH 9.5 was determined. In samples of adult shrimp hepatopancreas two optimum pH were determined: one in the acid range (pH 4-6) and one in the basic range (pH 10-11), while in the intestine only one in an acidic pH range (pH 4-6) was determined. The cellulase activity detected in the ontogenetic development of the shrimp was low and unstable, a condition also reported in the comparative analysis of digestive enzymes in four other species of crustaceans. The relative activity of the two enzymes is similar in the hepatopancreas and each of these have an activity four times greater than that found in the intestine. These results suggest the presence of two possible cellulases, one could be transported from the hepatopancreas into the intestine but more tests are needed to get more conclusive results. The cellulase activity at basic pH (10.5) may be a cellulase produced endogenously by the shrimp. The data reported in this study of enzyme production capabilities shrimp can be the basis for future research projects aimed at optimizing procedures shrimp farming

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Segovia Salcedo C, Narváez Trujillo A, Espinoza Fuentes F. Cellulases present in the digestive tract of the shrimp Litopenaeus vannamei. REMCB [Internet]. 2017Aug.15 [cited 2024Jul.3];36(1-2):37-5. Available from: https://remcb-puce.edu.ec/remcb/article/view/264
Section
Artículos Científicos

References

Bauer AW, Kirby WMM, Sherris JC y Turck M. 1966. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 36:493-496.

Beilen JB y Li Z. 2002. Enzyme Technology: an overview. Current Opinion in Biotechnology, 13, 338-344.

Bradford M. 1976. A Rapid and sensitive method for the quantification of microgram quantitites of protein utilizing the principle of protein-dye binding. Analytic Biochemistry, 72:248-254.

Byrne KA, Lehnert SA, Johnson SE y Moore SS. 1999. Isolation of a cDNA encoding a putative cellulose in the red claw crayfish Cherax quadricarinatus. Gene, 239: 317-324.

Copa-Patiño JL, Monistrol Y, Laborada F y Pérez-Lebic. 1987. Characterization of 1,3 Beta-Glucanasas poroduced during autolisis of Penicilllium oxalicum in different culture media. Transaction of British Mycology Society, 88(3):317-321.

Crawford AC, Kricker JA, Anderson AJ, Richardson NR y Mather PB. 2004. Structure and function of a cellulose gene in redclaw crayfish Cherax quadricarinatus. Gene, 340: 267-274.

Cutter MF y Rosenber F. 191. The role of cellulolytic bacteria in the digestive process of the shipworm. II. Isolation and some properties of marine bacterial cellulose. Marine Organisms, 7:225-229.

Dempsey A y Kitting C. 1987. Characteristics of bacteria isolated from penaid shrimp. Crustaceana, 52:90-94.

Espinoza-Fuentes F, Ferreira C y Terra W. 1984. Spatial organization of digestion in the larval and imaginal stages of the Sciarid fly, Trichosia pubescens. Insect Biochemistry, 14(6):631-638.

Espinoza-Fuentes F y Terra W. 1986. Properties of larval and imaginal membrane-bound digestive enzymes from Trichosia pubescens. Archives of Insect Biochemistry and Physiology, 3:181-192.

Fao. 2006. Cultured Aquatic Species Information Programme. Penaeus vannamei. Cultured Aquatic Species Information Programme. Text by Briggs, M. In: FAO Fisheries and Aquaculture Department [online]. Rome. Updated 7 April 2006. [Cited 29 July 2015]. http://www. fao.org/fishery/culturedspecies/Penaeus_ vannamei/en

Galante YM y Formantici C. 2003. Enzyme Application in Detergency and in Manufacturing Industries. Current Organic Chemistry, 7:1399-1422.

Gaxiola G, Rosas C, Arena L y Cuzón G. 2006. Requerimiento de carbohidratos. En: Rosas C. Carrillo O. Wilson R. Andreatta ER (eds) Estado actual y perspectivas de la nutrición de los camarones peneidos en Iberoamèrica. Mèxico DF, pp 143-153.

Guillén F, Reyes F, Rodríguez J y Vásquez C. 1987. Induction of an extracelular cellulase system during autolysis of Alternaria alternata. Transaction of British Mycology Society, 89(1):35-39.

Henrissat B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemistry Journal, 280:309-316.

Hood M, Meyer P y Colmer A. 1971. Bacteria of the digestive tract of the white shrimp Penaus setferusi. Bacteriology Proceedings, 71:48.

Hui JPM, White TC y Thibault P. 2002. Identification of glycan structure and glycosylation sites in cellobiohydrolase II and endoglucanase I and II from Trichoderma ressei. Glycobiology, 12:837-849.

Kaya F, Heitmann J y Joyce T. 1994. Cellulase binding to cellulose fibers in high shear fields. Journal of Biotechnology, 36:1-10.

Lo Leggio L y Larsen S. 2002. The 1.62 A structure of Thermoascus aurantiacus endoglucanase: completing the structural picture of subfamilies in glycoside hydrolase family 5. FEBS Letters, 523:103-108.

Luqing P. 1997. Comparative studies on digestive enzyme activities during larval development of four species of shrimps and crabs. Journal of Ocean University of Qingdao, 3.

Mangrove R. 1998. Digestive ability of freshwater crayfish Paranephrops zealandicus (White) (parastacidae) and the role of microbial enzymes. Freshwater Biology, 20:305-314.

Marín Alvarado RM. 2007. Caracterización y Expresión Recombinante de una Celulasa de Origen Antártico. Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas.

Nakashima K, Watanabe H, Saitoh H, Tokuda G y Azuma JI. 2002. Dual cellulose-digestive systemof the wood-feeding termite Coptotermes formosanus Shikari. Insect Biochemistry and Molecular Biology, 32:777-784.

Narváez-Trujillo A. 1990. Identificación y cuantificación de la enzima tripsina, aminopeptidasa y amilasa responsables de la digestión primaria en el camarón (Penaeus vannamei), cultivado en los laboratorios de producción de lava en la provincia de Guayas, Ecuador. Tesis de Licenciatura en Ciencias Biológicas, Pontificia Universidad Católica del Ecuador. Quito, Ecuador.

Ohara H, Noguchi J, Karita S, Kimura T, Sakka K y Ohmiya K. 2000.Sequence of eg Vand Properties of Eg V, a Ruminococcus albus Endoglucanase Containing a Dockering Domain. Bioscience, Biotechnology and Biochemisty, 64:80-88.

Pvasovic M, Richardson NA, Anderson AJ, Mann D y Mather PB. 2004. Effect of pH, temperature and diet on digestive profiles in the mud crab, Scylla serrata. Aquacultura, 242:641-654.

Rodgers GC, Roberts SD y Dixon CD. 2013. The effects of temperature on larval size in the western king prawn, Peaneus (Melicertus) latisulcatus Kishinouye, from Spencer Gulf, South Australia: implications for fishery
management. Marine and Freshwater Research, 64:976-985.

Segovia-Salcedo MC. 1996. Celulasas presentes en el Intestino Medio y el Hepatopáncreas de Penaeus vannamei cultivado en la Costa Ecuatoriana. Tesis de Licenciatura en Ciencias Biológicas, Pontificia Universidad Católica del Ecuador. Quito, Ecuador.

Tanimura A, Liu W, Yamada K, Kishida T y Toyohara H. 2012. Animal Cellulases with a focus on aquatic invertebrates. Fisheries Sciences, 79:1-13.

Tuyub-Tzuc J, Rendìz-Escalante D, Rojas-Herrera R, Gaxiola Cortés G y Arena-Ortiz MA. 2014. Microbiata from Litopenaeus vannmaei: digestive tract microbial community of Pacific White shrimp (Litopenaeus vannamei). Springer Plus, 3:280.

Velurtas SM, Díaz AC, Fernández-Giménez AN y Fenucci JL. 2011. Influence of dietary starch and cellulose levels on the metabolic profile and apparent digestibility in penaeoid shrimp. Latin American Journal of Aquatic Research, 39(2) 214-222.

Wang YL, Cracker L y Zhongyuan M. 1994. Purification and characterization of cellulose from leaf absicion zones of coleus. Plant Physiology Biochemistry, 32(4): 467-472.

Watanabe H y Tokuda G. 2010. Cellulolytic systems in insects. Annual Review of Entomology, 55:609–632.

Watanabe H, Noda H, Tokuda G y Lo N. 1998. A cellulase gene of termite origin. Nature, 394:330–331.

Zimmer M, Danko JP, Pennings SC, Danford AR, Carefoot TH, Ziegler A y Uglow RF. 2002. Cellulose digestion and phenol oxidation in coastal isopods (Crustacea:Isopoda). Marine Biology, 140:1207-1213.