Uso del pez cebra (Danio rerio) como especie modelo para la investigación Biomédica

Contenido principal del artículo

Jairo Galarza-Pichucho
Ariel Arévalo Cuaical
Francis Ruano-Rivadeneira
Daniela Zurita-Paredes
Andrés Romero-Carvajal

Resumen

El pez cebra (Danio rerio) es una especie de laboratorio usada mundialmente para el biodescubrimiento y la investigación biomédica experimental. Esta especie posee un genoma secuenciado y presenta facilidades para la manipulación genética por lo que es actualmente usada para modelar enfermedades humanas crónicas, infecciosas y cáncer en ensayos preclínicos. Al ser más pequeños y de alta fecundidad, el manejo de pez cebra es más económico en comparación con modelos de mamíferos. La facilidad de manipulación de embriones y larvas que se desarrollan en medios de cultivo permite el reemplazo, reducción y refinamiento en el uso de animales adultos para investigación. Estas características también facilitan su uso para ensayos masivos de cribado (screening) mutagénicos, toxicológicos o de biodescubrimiento. Esta revisión pretende resumir los puntos más importantes sobre el manejo y experimentación en el pez cebra. 

Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
1.
Galarza-Pichucho J, Arévalo Cuaical A, Ruano-Rivadeneira F, Zurita-Paredes D, Romero-Carvajal A. Uso del pez cebra (Danio rerio) como especie modelo para la investigación Biomédica . REMCB [Internet]. 5 de mayo de 2025 [citado 24 de junio de 2025];46(1). Disponible en: https://remcb-puce.edu.ec/remcb/article/view/1039
Sección
Artículos de Revisión

Citas

AGROCALIDAD Resolución XX, 2021. Norma zoosanitaria que establece el reglamento para la conformación, aprobación y el seguimiento de Comités de Ética para la investigación con animales en el Ecuador y bioterios 4–17.
Aleström, P., D’Angelo, L., Midtlyng, P.J., Schorderet, D.F., Schulte-Merker, S., Sohm, F., Warner, S., 2020. Zebrafish: Housing and husbandry recommendations. Lab Anim 54, 213–224. https://doi.org/10.1177/0023677219869037
Arunachalam, M., Raja, M., Vijayakumar, C., Malaiammal, P., Mayden, R.L., 2013. Natural history of zebrafish (Danio rerio) in India. Zebrafish 10, 1–14. https://doi.org/10.1089/zeb.2012.0803
Astell, K.R., Sieger, D., 2020. Zebrafish In Vivo Models of Cancer and Metastasis. Cold Spring Harb Perspect Med 10, a037077. https://doi.org/10.1101/CSHPERSPECT.A037077
Bradford, Y.M., Van Slyke, C.E., Ruzicka, L., Singer, A., Eagle, A., Fashena, D., Howe, D.G., Frazer, K., Martin, R., Paddock, H., Pich, C., Ramachandran, S., Westerfield, M., 2022. Zebrafish information network, the knowledgebase for Danio rerio research. Genetics 220. https://doi.org/10.1093/GENETICS/IYAC016
Bradley, K.M., Breyer, J.P., Melville, D.B., Broman, K.W., Knapik, E.W., Smith, J.R., 2011. An SNP-based linkage map for zebrafish reveals sex determination loci. G3: Genes, Genomes, Genetics 1, 3–9. https://doi.org/10.1534/g3.111.000190
Brown, M.J., 2013. Ethics and Animal Welfare. Laboratory Animal Welfare 7–15. https://doi.org/10.1016/B978-0-12-385103-1.00002-6
Cartner, S.C., Durboraw, E., Watts, A., 2020. Regulations, policies and guidelines pertaining to the use of zebrafish in biomedical research, in: The Zebrafish in Biomedical Research: Biology, Husbandry, Diseases, and Research Applications. Elsevier, pp. 451–459. https://doi.org/10.1016/B978-0-12-812431-4.00038-5
Cassar, S., Adatto, I., Freeman, J.L., Gamse, J.T., Iturria, I., Lawrence, C., Muriana, A., Peterson, R.T., Van Cruchten, S., Zon, L.I., 2020. Use of Zebrafish in Drug Discovery Toxicology. Chem Res Toxicol 33, 95–118. https://doi.org/10.1021/acs.chemrestox.9b00335
Castranova, D., Wang, C., 2019. Zebrafish breeding and colony management. The Zebrafish in Biomedical Research: Biology, Husbandry, Diseases, and Research Applications 357–364. https://doi.org/10.1016/B978-0-12-812431-4.00031-2
Chakrabarti, S., Streisinger, G., Singer, F., Walker, C., 1983. Frequency of X-ray induced specific locus and recessive lethal mutations in mature germ cells of the zebrafish, Brachydanio rerio. Genetics 103, 109–123.
Chang, C.T., Benedict, S., Whipps, C.M., 2019. Transmission of Mycobacterium chelonae and Mycobacterium marinum in laboratory zebrafish through live feeds. J Fish Dis. 42, 1425–1431. https://doi.org/10.1111/jfd.13071
Cipriani-Avila, I., Molinero, J., Jara-Negrete, E., Barrado, M., Arcos, C., Mafla, S., Custode, F., Vilaña, G., Carpintero, N., Ochoa-Herrera, V., 2020. Heavy metal assessment in drinking waters of Ecuador: Quito, Ibarra and Guayaquil. J Water Health 18, 1050–1064. https://doi.org/10.2166/WH.2020.093
Cockington, J., 2019. Aquatic housing, in: The Zebrafish in Biomedical Research: Biology, Husbandry, Diseases, and Research Applications. Elsevier, pp. 279–298. https://doi.org/10.1016/B978-0-12-812431-4.00026-9
Creaser, C.W., 1934. The Technic of Handling the Zebra Fish (Brachydanio rerio) for the Production of Eggs Which Are Favorable for Embryological Research and Are Available at Any Specified Time Throughout the Year. Copeia 1934, 159. https://doi.org/10.2307/1435845
Ducharme, N.A., Peterson, L.E., Benfenati, E., Reif, D., McCollum, C.W., Gustafsson, J.-Å., Bondesson, M., 2013. Meta-analysis of toxicity and teratogenicity of 133 chemicals from zebrafish developmental toxicity studies. Reproductive Toxicology 41, 98–108. https://doi.org/10.1016/J.REPROTOX.2013.06.070
Eisen, J.S., 2020. History of zebrafish research. The Zebrafish in Biomedical Research: Biology, Husbandry, Diseases, and Research Applications 3–14. https://doi.org/10.1016/B978-0-12-812431-4.00001-4
Engeszer, R.E., Patterson, L.B., Rao, A.A., Parichy, D.M., 2007. Zebrafish in the wild: A review of natural history and new notes from the field. Zebrafish 4, 21–40. https://doi.org/10.1089/zeb.2006.9997
Fowler, L.A., Williams, M.B., D’Abramo, L.R., Watts, S.A., 2019a. Zebrafish nutrition-moving forward, in: The Zebrafish in Biomedical Research: Biology, Husbandry, Diseases, and Research Applications. Elsevier, pp. 379–401. https://doi.org/10.1016/B978-0-12-812431-4.00033-6
Fowler, L.A., Williams, M.B., Dennis-Cornelius, L.N., Farmer, S., Barry, R.J., Powell, M.L., Watts, S.A., 2019b. Influence of Commercial and Laboratory Diets on Growth, Body Composition, and Reproduction in the Zebrafish Danio rerio. Zebrafish 16, 508–521. https://doi.org/10.1089/ZEB.2019.1742/ASSET/IMAGES/LARGE/FIGURE9.JPEG
Fuentes, R., Mullins, M.C., Fernández, J., 2018. Formation and dynamics of cytoplasmic domains and their genetic regulation during the zebrafish oocyte-to-embryo transition. Mech Dev 154, 259–269. https://doi.org/10.1016/j.mod.2018.08.001
Garber, J., Barbee, R., Bielitzki, J., Clayton, L., Donovan, J., Hendriksen, C., 2011. Guide for the care and use of laboratory animals. National Academy Press, Washington D. C. .
Grunwald, D., Eisen, J., 2002. Headwaters of the zebrafish — emergence of a new model vertebrate David. Nat Rev Genet 3, 711–717. https://doi.org/10.1038/nrg891
Haffter, P., Granato, M., Brand, M., Mullins, M.C., Hammerschmidt, M., Kane, D.A., Odenthal, J., van Eeden, F.J., Jiang, Y.J., Heisenberg, C.P., Kelsh, R.N., Furutani-Seiki, M., Vogelsang, E., Beuchle, D., Schach, U., Fabian, C., Nusslein-Volhard, C., 1996. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36. https://doi.org/10.1242/DEV.123.1.1
Hamilton, F., 1822. An account of the fishes found in the river Ganges and its branches, An account of the fishes found in the river Ganges and its branches / by Francis Hamilton, (formerly Buchanan,) ...; With a volume of plates in royal quarto. A. Constable and company, Edinburgh. https://doi.org/10.5962/bhl.title.6897
Hammer, H.S., 2020. Water Quality For Zebrafish Culture, in: The Zebrafish in Biomedical Research. Elsevier, pp. 321–335. https://doi.org/10.1016/B978-0-12-812431-4.00029-4
Harvey, B., Kelley, R.N., Ashwood-Smith, M.J., 1983. Permeability of intact and dechorionated zebra fish embryos to glycerol and dimethyl sulfoxide. Cryobiology 20, 432–439. https://doi.org/10.1016/0011-2240(83)90033-0
Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., Collins, J.E., Humphray, S., McLaren, K., Matthews, L., McLaren, S., Sealy, I., Caccamo, M. et al. 2013. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503. https://doi.org/10.1038/nature12111
Johnson, S.L., Africa, D., Walker, C., Weston, J.A., 1995. Genetic Control of Adult Pigment Stripe Development in Zebrafish. Dev Biol 167, 27–33. https://doi.org/10.1006/DBIO.1995.1004
Keller, R., 2005. Cell migration during gastrulation. Curr Opin Cell Biol 17, 533–541. https://doi.org/10.1016/J.CEB.2005.08.006
Kent, M.L., Feist, S.W., Harper, C., Hoogstraten-Miller, S., Law, J. Mac, Sánchez-Morgado, J.M., Tanguay, R.L., Sanders, G.E., Spitsbergen, J.M., Whipps, C.M., 2009. Recommendations for control of pathogens and infectious diseases in fish research facilities. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 149, 240–248. https://doi.org/10.1016/J.CBPC.2008.08.001
Kimmel, C., Warga, R., 1988. Cell lineage and developmental potential of cells in the zebrafish embryo. Trends in Genetics 4(3), 68–74. https://doi.org/10.1016/0168-9525(88)90043-1
Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F., 1995. Stages of embryonic development of the zebrafish. Developmental Dynamics 203, 253–310. https://doi.org/10.1002/aja.1002030302
Kithcart, A., MacRae, C.A., 2017. Using Zebrafish for High-Throughput Screening of Novel Cardiovascular Drugs. JACC Basic Transl Sci 2, 1–12. https://doi.org/10.1016/J.JACBTS.2017.01.004
Kolkovski, S., Curnow, J., King, J., 2004. Intensive rearing system for fish larvae research II: Artemia hatching and enriching system. Aquac Eng 31, 309–317. https://doi.org/10.1016/J.AQUAENG.2004.05.005
Kütter, M.T., Barcellos, L.J.G., Boyle, R.T., Marins, L.F., Silveira, T., 2023. Good practices in the rearing and maintenance of zebrafish (Danio rerio) in Brazilian laboratories. Ciência Animal Brasileira 24, e-74134. https://doi.org/10.1590/1809-6891V24E-74134E
Licitra, R., Fronte, B., Verri, T., Marchese, M., Sangiacomo, C., Santorelli, F.M., 2024. Zebrafish Feed Intake: A Systematic Review for Standardizing Feeding Management in Laboratory Conditions. Biology (Basel) 13, 209. https://doi.org/10.3390/BIOLOGY13040209/S1
Long, H.K., Sims, D., Heger, A., Blackledge, N.P., Kutter, C., Wright, M.L., Grützner, F., Odom, D.T., Patient, R., Ponting, C.P., Klose, R.J., 2013. Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates. Elife 2013. https://doi.org/10.7554/ELIFE.00348
Long, Q., Meng, A., Wang, H., Jessen, J.R., Farrell, M.J., Lin, S., 1997. GATA-1expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 124, 4105–4111.
Lush, M.E., Piotrowski, T., 2014. Sensory Hair Cell Regeneration in the Zebrafish Lateral Line. Developmental Dynamics 243, 1187–1202. https://doi.org/10.1002/dvdy
Markovich, M.L., Rizzuto, N. V., Brown, P.B., 2007. Diet affects spawning in zebrafish. Zebrafish 4, 69–74. https://doi.org/10.1089/zeb.2006.9993
Marques, I.J., Lupi, E., Mercader, N., 2019. Model systems for regeneration: Zebrafish. Development 146, 1–13. https://doi.org/10.1242/dev.167692
Martins, S., Monteiro, J.F., Vito, M., Weintraub, D., Almeida, J., Certal, A.C., 2016. Toward an Integrated Zebrafish Health Management Program Supporting Cancer and Neuroscience Research. Zebrafish 13, S47–S55. https://doi.org/10.1089/zeb.2015.1198
McClure, M.M., McIntyre, P.B., McCune, A.R., 2006. Notes on the natural diet and habitat of eight danionin fishes, including the zebrafish Danio rerio. J Fish Biol 69, 553–570. https://doi.org/10.1111/j.1095-8649.2006.01125.x
Meyers, J.R., 2018. Zebrafish: Development of a Vertebrate Model Organism, in: Current Protocols in Essential Laboratory Techniques. Blackwell Publishing Inc., pp. 1–26. https://doi.org/10.1002/cpet.19
Murray, K.N., Lains, D., Spagnoli, S.T., 2020. Water Quality and Idiopathic Diseases of Laboratory Zebrafish, in: The Zebrafish in Biomedical Research: Biology, Husbandry, Diseases, and Research Applications. Academic Press, pp. 463–477. https://doi.org/10.1016/B978-0-12-812431-4.00039-7
Narumanchi, S., Wang, H., Perttunen, S., Tikkanen, I., Lakkisto, P., Paavola, J., 2021. Zebrafish Heart Failure Models. Front Cell Dev Biol 9, 662583. https://doi.org/10.3389/FCELL.2021.662583/BIBTEX
Nasiadka, A., Clark, M.D., 2014. Zebrafish Breeding in the Laboratory Environment. ILAR J 53. https://doi.org/https://doi.org/10.1093/ilar.53.2.161
Nüsslein-Volhard, C., 2012. The zebrafish issue of Development. Development 139, 4099–4103. https://doi.org/10.1242/DEV.085217
Owen, J.P., Kelsh, R.N., Yates, C.A., 2020. A quantitative modelling approach to zebrafish pigment pattern formation. Elife 9, 1–62. https://doi.org/10.7554/ELIFE.52998
Pavlidis, M., Digka, N., Theodoridi, A., Campo, A., Barsakis, K., Skouradakis, G., Samaras, A., Tsalafouta, A., 2013. Husbandry of Zebrafish, Danio Rerio, and the Cortisol Stress Response. Zebrafish 10, 524–531. https://doi.org/10.1089/ZEB.2012.0819
Pronobis, M.I., Poss, K.D., 2020. Signals for cardiomyocyte proliferation during zebrafish heart regeneration. Curr Opin Physiol 14, 78–85. https://doi.org/10.1016/j.cophys.2020.02.002
Reed, B., Jennings, M., 2011. Guidance on the housingand care of Zebrafish, Research Animal Department. RSPCA.
Schlegel, A., 2016. Zebrafish models for dyslipidemia and atherosclerosis research. Front Endocrinol (Lausanne) 7, 240808. https://doi.org/10.3389/FENDO.2016.00159/BIBTEX
Shamipour, S., Kardos, R., Xue, S.L., Hof, B., Hannezo, E., Heisenberg, C.P., 2019. Bulk Actin Dynamics Drive Phase Segregation in Zebrafish Oocytes. Cell 177, 1463-1479.e18. https://doi.org/10.1016/J.CELL.2019.04.030/ATTACHMENT/70D9C075-2C0C-4349-A030-86E633C02849/MMC7.MP4
Sharma, P., Sharma, B.S., Verma, R.J., 2021. CRISPR-based genome editing of zebrafish, in: Progress in Molecular Biology and Translational Science. Elsevier B.V., pp. 69–84. https://doi.org/10.1016/bs.pmbts.2021.01.005
Singleman, C., Holtzman, N.G., 2014. Growth and Maturation in the Zebrafish, Danio Rerio: A Staging Tool for Teaching and Research. Zebrafish 11, 396. https://doi.org/10.1089/ZEB.2014.0976
Sneddon, L.U., Schroeder, P., Roque, A., Finger-Baier, K., Fleming, A., Tinman, S., Collet, B., 2024. Pain management in zebrafish: Report from a FELASA Working Group. Lab Anim 58, 261–276. https://doi.org/10.1177/00236772231198733/ASSET/IMAGES/LARGE/10.1177_00236772231198733-FIG1.JPEG
Sorgeloos, P., Dhert, P., Candreva, P., 2001. Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture 200, 147–159. https://doi.org/10.1016/S0044-8486(01)00698-6
Spence, R., Gerlach, G., Lawrence, C., Smith, C., 2008. The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev Camb Philos Soc 83, 13–34. https://doi.org/10.1111/J.1469-185X.2007.00030.X
Streisinger, G., Coale, F., Taggart, C., Walker, C., Grunwald, D.J., 1989. Clonal Origins of Cells in the Pigmented Retina of the Zebrafish Eye. Dev Biol 131, 60–69.
Streisinger, G., Walker, C., Dower, N., Knauber, D., Singer, F., 1981. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291, 293–296. https://doi.org/10.1038/291293a0
Stuart, G.W., Mcmurray, J. V, Westerfield, M., 1988. Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development 103, 403–412.
Suriyampola, P.S., Shelton, D.S., Shukla, R., Roy, T., Bhat, A., Martins, E.P., 2016. Zebrafish Social Behavior in the Wild. Zebrafish 13, 1–8. https://doi.org/10.1089/zeb.2015.1159
The Zebrafish Information Network, 2024. Wild-Type Lines [WWW Document]. URL https://zfin.org/action/feature/wildtype-list (accessed 8.26.24).
Trevarrow, B., Robison, B., 2004. Genetic Backgrounds, Standard Lines, and Husbandry of Zebrafish. Methods Cell Biol 77, 599–616. https://doi.org/10.1016/S0091-679X(04)77032-6
Valdivieso, A., Ribas, L., Monleón-Getino, A., Orbán, L., Piferrer, F., 2020. Exposure of zebrafish to elevated temperature induces sex ratio shifts and alterations in the testicular epigenome of unexposed offspring. Environ Res 186, 109601. https://doi.org/10.1016/J.ENVRES.2020.109601
Veldman, M.B., Lin, S., 2008. Zebrafish as a developmental model organism for pediatric research. Pediatr Res 64, 470–476. https://doi.org/10.1203/PDR.0B013E318186E609
Villamizar, N., Vera, L.M., Foulkes, N.S., Sánchez-Vázquez, F.J., 2014. Effect of lighting conditions on zebrafish growth and development. Zebrafish 11, 173–181. https://doi.org/10.1089/zeb.2013.0926
Walker, C., Streisinger, G., 1983. Induction of mutations by y-rays in pregonial germ cells of zebrafish embryos. Genetics 103, 125–136.
Watts, S.A., D’Abramo, L.R., 2021. Standardized Reference Diets for Zebrafish: Addressing Nutritional Control in Experimental Methodology. Annu Rev Nutr 41, 511–527. https://doi.org/10.1146/annurev-nutr-120420-034809
Whipps, C.M., Kent, M.L., 2019. Bacterial and fungal diseases of zebrafish, in: The Zebrafish in Biomedical Research: Biology, Husbandry, Diseases, and Research Applications. Elsevier, pp. 495–508. https://doi.org/10.1016/B978-0-12-812431-4.00041-5
WHOA, 2024. Capítulo 7.8. Utilización de animales en la investigación y educación [WWW Document]. Código Sanitario para los Animales Terrestres. URL https://www.woah.org/es/que-hacemos/normas/codigos-y-manuales/acceso-en-linea-al-codigo-terrestre/?id=169&L=1&htmfile=chapitre_aw_research_education.htm (accessed 8.28.24).
Yang, L., Ho, N.Y., Alshut, R., Legradi, J., Weiss, C., Reischl, M., Mikut, R., Liebel, U., Müller, F., Strähle, U., 2009. Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reproductive Toxicology 28, 245–253. https://doi.org/10.1016/J.REPROTOX.2009.04.013
Zahangir, M.M., Haque, F., Mostakim, G.M., Islam, M.S., 2015. Secondary stress responses of zebrafish to different pH: Evaluation in a seasonal manner. Aquac Rep 2, 91–96. https://doi.org/10.1016/J.AQREP.2015.08.008
Zeng, C.W., Sheu, J.C., Tsai, H.J., 2020. The Neuronal Regeneration of Adult Zebrafish After Spinal Cord Injury Is Enhanced by Transplanting Optimized Number of Neural Progenitor Cells. Cell Transplant 29. https://doi.org/10.1177/0963689720903679
Zu, Y., Tong, X., Wang, Z., Liu, D., Pan, R., Li, Z., Hu, Y., Luo, Z., Huang, P., Wu, Q., Zhu, Z., Zhang, B., Lin, S., 2013. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods 10, 329–331. https://doi.org/10.1038/nmeth.2374