First report of the bacterial microbiota in the gut of Panstrongylus chinai vector of Chagas disease in southern Ecuador

Contenido principal del artículo

Matías Cadena Cárdenas
Andrea López- Rosero
Juan José Bustillos
Juan Francisco Villacís B.
César A. Yumiseva
Mario J. Grijalva
Anita Gabriela Villacís Salazar

Resumen

La Enfermedad de Chagas (ECh) es causada por el parásito Trypanosoma cruzi y transmitida principalmente por insectos hematófagos de la subfamilia Triatominae. Endémica en 21 países de América la ECh se encuentra principalmente en áreas rurales, sin embargo, se está extendiendo a regiones urbanas debido a la migración. En Ecuador se han identificado 16 especies de triatominos, entre ellos Panstrongylus chinai, vector secundario en la provincia de Loja. Si bien los insecticidas han sido el método principal para controlar la ECh, es necesario mejorar las estrategias para prevenir su propagación. Este estudio examinó la microbiota bacteriana de P. chinai de tres comunidades rurales de la provincia de Loja. Se examinaron un total de 63 unidades domiciliarias (UDs), con un índice de infestación del 7,9 %. El estudio analizó 12 individuos de P. chinai recolectadas en las viviendas y 50 de colonias de laboratorio para determinar su composición bacteriana. Se extrajo el intestino y el ADN, realizándose la detección molecular de T. cruzi mediante PCR y secuenciando la región bacteriana 16S. Los resultados mostraron la presencia de T. cruzi en una muestra colectada y el género Staphylococcus, específicamente S. saprophyticus (75%) y S. equorum (25%). Estos hallazgos nos permiten mejorar la comprensión de la microbiota de P. chinai y ofrecer información valiosa para desarrollar nuevas estrategias de controlar la ECh.

Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
1.
Cadena Cárdenas M, López- Rosero A, Bustillos JJ, Villacís B. JF, Yumiseva CA, Grijalva MJ, Villacís Salazar AG. First report of the bacterial microbiota in the gut of Panstrongylus chinai vector of Chagas disease in southern Ecuador. REMCB [Internet]. 5 de mayo de 2025 [citado 24 de junio de 2025];46(1). Disponible en: https://remcb-puce.edu.ec/remcb/article/view/1041
Sección
Notas científicas

Citas

Abad-Franch F, Paucar CA, Carpio CC, Cuba Cuba CA, Aguilar VHM & Miles MA. 2001. Biogeography of Triatominae (Hemiptera: Reduviidae) in Ecuador: implications for the design of control strategies. Mem. Inst. Oswaldo Cruz. 96: 611-620.
Alcaráz LE, Satorres SE, Lucero RM, Puig de Centorbi ON. 2003. Species identification, slime production and oxacillin susceptibility in coagulase-negative staphylococci isolated from nosocomial specimens. Braz. J. Microbiol. 34:45–51
Coura JR. 2013. Chagas disease: control, elimination and eradication. Is it possible?. Mem. Inst. Oswaldo Cruz. 108: 962-967.
Da Mota FF, Marinho LP, De Carvalho Moreira CJ, Lima MM, Mello CB, Souza Garcia E, Carels N, Azambuja P. 2012. Cultivation-independent methods reveal differences among bacterial gut microbiota in triatomine vectors of Chagas disease. PLoS Negl. Trop. Dis. 6(5): e1631.
Díaz S, Villavicencio B, Correia N, Costa J, Haag KL. 2016. Triatomine bugs, their microbiota and Trypanosoma cruzi: asymmetric responses of bacteria to an infected blood meal. Parasit Vectors. 9:636.
Durden C, Tian Y, Knape K, Klemashevich C, Norman KN, Carey JB, Hamer SA, Hamer GL. 2023. Fluralaner systemic treatment of chickens results in mortality in Triatoma gerstaeckeri, vector of the agent of Chagas disease. Parasit Vectors. 16(1): 1-10.
Engel P and Moran NA. 2013. The gut microbiota of insects–diversity in structure and function. FEMS Microbiol. Rev. 37(5): 699-735.
Grijalva MJ, Villacís AG, Ocaña-Mayorga S, Moncayo AL, Baus EG. 2015. Comprehensive survey of domiciliary triatomine species capable of transmitting Chagas disease in southern Ecuador. PLoS Negl. Trop. Dis. 9(10): e0004142. 
Guarneri AA, Schaub GA. 2021. Interaction of Triatomines with Their Bacterial Microbiota and Trypanosomes. In: Guarneri, A., Lorenzo, M. (eds) Triatominae - The Biology of Chagas Disease Vectors. Entomology in Focus. vol 5. Springer, Cham.
Gumiel M, Da Mota FF, De Sousa RV, Sarquis O, Pereira De Castro D, Lima MM, De Souza Garcia E, Carels N, Azambuja P. 2015. Characterization of the microbiota in the guts of Triatoma brasiliensis and Triatoma pseudomaculata infected by Trypanosoma cruzi in natural conditions using culture independent methods. Parasit Vectors. 8:245.
Heuer H, Krsek M, Baker P, Smalla K, Wellington EM. 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63.
Hu Y, Xie H, Gao M, Huang P, Zhou H, Ma Y, Zhou M, Liang J, Yang J, Lv Z. 2020. Dynamic of composition and diversity of gut microbiota in Triatoma rubrofasciata in different developmental stages and environmental conditions. Front. Cell. Infect. Microbiol. 10: 587708.
Jiménez Cortés JG, García-Contreras R, Bucio-Torres MI, Cabrera-Bravo M, López-Jácome LE, Franco-Cendejas R, Vences-Blanco MO, Salazar-Schettino PM. 2021. Bacteria cultured from the gut of Meccus pallidipennis (Hemiptera: Reduviidae), a triatomine species endemic to Mexico. Med. Vet. Entomol. 35(3): 478-483.
Justi SA, Galvão C. 2017. The Evolutionary Origin of Diversity in Chagas Disease Vectors. Trends Parasitol. 33(1): 42–52.
Kieran TJ, Kaylee MH, Arnold JC, Thomas IV, Varian CP, Saldaña A, Calzada JE, Glenn TC, Gottdenker NL. 2019. Regional biogeography of microbiota composition in the Chagas disease vector Rhodnius pallescens. Parasit Vectors. 12(1): 1-13.
Lent H, Wygodzinsky P. 1979. Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas' disease. Bull. Am. Mus. Nat. Hist. 163(3):123-520.
Lopez-Ordonez T, Flores-López CA, Montejo-Lopez R, Cruz-Hernandez A, Conners EE. 2018. Cultivable bacterial diversity in the gut of the Chagas disease vector Triatoma dimidiata: identification of possible bacterial candidates for a paratransgenesis approach. Front. Ecol. Evol. 5:174.
Mann AE, Mitchell EA, Zhang Y. Curtis-Robles R, Thapa S, Hamer SA, Allen MS. 2020. Comparison of the bacterial gut microbiome of North American Triatoma spp. with and without Trypanosoma cruzi. Front. Microbiol. 11:364.
Meugnier H, Bes M, Vernozy-Rozand C, Mazuy C, Brun Y, Freney J, Fleurette J. 1996. Identification and ribotyping of Staphylococcus xylosus and Staphylococcus equorum strains isolated from goat milk and cheese. Int. J. Food Microbiol. 31:325–331
Moser DR, Kirchhoff LV, Donelson JE. 1989. Detection of Trypanosoma cruzi by DNA amplification using the polymerase chain reaction. J. Clin. Microbiol. 27(7): 1477-1482.
Mosquera KD, Villacís AG, Grijalva MJ. 2016. Life cycle, feeding, and defecation patterns of Panstrongylus chinai (Hemiptera: Reduviidae: Triatominae) under laboratory conditions. J. Med. Entomol. 53(4): 776-781.
Oliveira JL, Cury JC, Gurgel-Gonçalves R, Bahia AC, Monteiro FA. 2018. Field-collected Triatoma sordida from central Brazil display high microbiota diversity that varies with regard to developmental stage and intestinal segmentation. PLoS Negl. Trop. Dis. 12(8):e0006709.
Patterson JS, Barbosa SE, Feliciangeli MD. 2009. On the genus Panstrongylus Berg 1879: evolution, ecology and epidemiological significance. Acta Trop. 110(2-3):187-199.
Schaub GA. 2020. Intestinal bacteria/mutualistic symbionts of triatomines—a review. Mitt. Dtsch. Ges. Allg. Angew. Entomol. 22, 191-194.
Schleifer KH, Kilpper-Bälz R, Devriese LA. 1984. Staphylococcus arlettae sp. nov., S. equorum sp. nov. and S. kloosii sp. nov. Three new coagulase-negative, novobiocin-resistant species from animal. Syst. Appl. Microbiol. 5:501–509.
Villacís AG, Arcos-Terán L, Grijalva MJ. 2008. Life cycle, feeding and defecation patterns of Rhodnius ecuadoriensis (Lent & León 1958) (Hemiptera: Reduviidae: Triatominae) under laboratory conditions. Mem. Inst. Oswaldo Cruz. 103:690-695.
Villacís AG, Ocaña-Mayorga S, Lascano MS, Yumiseva CA, Baus EG, Grijalva MJ. 2015. Abundance, natural infection with trypanosomes, and food source of an endemic species of triatomine, Panstrongylus howardi (Neiva 1911), on the Ecuadorian Central Coast. Am. J. Trop. Med. Hyg. 92(1):187.
Villacís AG, Dujardin JP, Panzera F, Yumiseva CA, Pita S, Santillán-Guayasamín S, Orozco MI, Mosquera KD, Grijalva MJ. 2020. Chagas vectors Panstrongylus chinai (Del Ponte, 1929) and Panstrongylus howardi (Neiva, 1911): chromatic forms or true species?. Parasit. Vectors. 13: 1-21.
Villacís JF, López-Rosero A, Bustillos JJ, Cadena M, Yumiseva CA, Grijalva MJ, Villacís AG. 2024. Bacterial microbiota from the gut of Rhodnius ecuadoriensis, vector of Chagas disease in the Ecuadorian Central Coast and Southern Andean regions. Front. Microbiol. 15: 1464720.
Waltmann A, Willcox AC, Balasubramanian, S, Mayori KB, Mendoza-Guerrero S, Salazar Sanchez RS, Roach J, Condori Pino C, Gilman RH, Bern C, Juliano JJ, Levy MZ, Meshnick SR, Bowman, NM. 2019. Hindgut microbiota in laboratory-reared and wild Triatoma infestans. PLOS Negl. Trop. Dis 13(5):e0007383.
World Health Organization. 2002. Control of Chagas disease: second report of the WHO expert committee (Vol. 2). World Health Organization