El caminar de los genes y el reloj molecular: Realidad del Ecuador

Contenido principal del artículo

César Paz-y-Miño
Ana Karina Zambrano
Paola E. Leone

Resumen

La genética convencional y la molecular han acumulado suficientes datos sobre las poblaciones humanas mundiales; por ello, en la actualidad se puede desentrañar el origen fidedigno de cada grupo humano. Una serie de marcadores genéticos han permitido rastrear el origen y la migración humana. STRs, Indels, Mitocondrias, Cromosoma Y, entre los más usados, dan cuenta de la trayectoria de la humanidad y el poblamiento del planeta. La genética moderna nos muestra la composición poblacional de diversas variantes de genes y secuencias no informativas; asàpermiten hoy entender mejor y hasta clasificar grupos poblacionales como etnias. Aunque, el ADN es el mismo para todos los humanos, secuencias no esenciales muestran diferentes frecuencias de presentación según el grupo étnico. Adicionalmente, a través del estudio de los marcadores genéticos, podemos calcular los tiempos migratorios y el momento del origen y expansión de los humanos; lo que se llama el reloj molecular. Este artículo aborda algunos de los conocimientos actuales en genética poblacional, etnicidad y tiempos genéticos, incluso, presenta datos reales de análisis del ADN.

Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
1.
Paz-y-Miño C, Zambrano AK, Leone PE. El caminar de los genes y el reloj molecular: Realidad del Ecuador. REMCB [Internet]. 15 de noviembre de 2018 [citado 17 de septiembre de 2024];39(2). Disponible en: https://remcb-puce.edu.ec/remcb/article/view/645
Sección
Artículos de Revisión

Citas

Baeta M, Núñez C, Sosa C, Bolea M, Casalod Y, González-Andrade F, … Martínez-Jarreta B. 2012. Mitochondrial diversity in Amerindian Kichwa and Mestizo populations from Ecuador. International Journal of Legal Medicine. 126(2): 299-302. https://doi.org/10.1007/s00414-011-0656-4

Bromham L, Penny D. 2003. The modern molecular clock. Nature Reviews Genetics. https://doi.org/10.1038/nrg1020

Chen F.-C, Li W.-H. 2001. Genomic Divergences between Humans and Other Hominoids and the Effective Population Size of the Common Ancestor of Humans and Chimpanzees. The American Journal of Human Genetics. 68(2): 444–456. https://doi.org/10.1086/318206

Chorev M, Carmel L. 2012. The function of introns. Frontiers in Genetics. 3: 55. https://doi.org/10.3389/fgene.2012.00055

Devany E, Park J - Y, Murphy M. R, Zakusilo G, Baquero J, Zhang X, … Kleiman F. E. 2016. Intronic cleavage and polyadenylation regulates gene expression during DNA damage response through U1 snRNA. Cell Discovery. 213(10). https://doi.org/10.1038/celldisc.2016.13

Elhaik E, Tatarinova T, Chebotarev D, Piras I. S, Maria Calò C, De Montis A, … Ziegle J. S. 2014. Geographic population structure analysis of worldwide human populations infers their biogeographical origins. Nature Communications. 5:3513. https://doi.org/10.1038/ncomms4513

Francis K. A. 2007. Charles Darwin and the Origin of Species. Retrieved from http://www.evolbiol.ru/docs/docs/large_files/cha rles_darwin.pdf

Fu Q, Mittnik A, Johnson P. L. F, Bos K, Lari M, Bollongino R, … Krause J. 2013. A Revised Timescale for Human Evolution Based on Ancient Mitochondrial Genomes. Current Biology. 23(7): 553–559.
https://doi.org/10.1016/J.CUB.2013.02.044

Galtier N, Nabholz B, Glémin S, Hurst G. D. D. 2009. Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Molecular Ecology, 18(22): 4541–4550. https://doi.org/10.1111/j.1365- 294X.2009.04380.x

Gaviria A, Sánchez M. E, Morejón G, Vela M, Aguirre V, Burgos G, … Paz-y-Miño C. 2013. Characterization and Haplotype analysis of 11 Y- STR loci in Ecuadorian population. Forensic Science International: Genetics Supplement Series. 4(1): 310–311. https://doi.org/10.1016/j.fsigss.2013.10.158

Hasegawa M, Kishino H, Yano T. aki. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution. 22(2): 160–174. https://doi.org/10.1007/BF02101694

Ho S. Y. W, Duchêne S. 2014. Molecular-clock models for estimating evolutionary rates and timescales. Molecular Ecology. 23(24): 5947–65. Retrieved from https://pdfs.semanticscholar.org/5a09/0efbb7961 7f73903c544c9184a2960b52327.pdf

Ho S. Y. W, Larson G. 2006. Molecular clocks: when times are a-changin’. https://doi.org/10.1016/j.tig.2005.11.006

Jo B.-S, Choi S. 2015. Introns: The Functional Benefits of Introns in Genomes. Genomics Inform. 13(4): 112–118. https://doi.org/10.5808/GI.2015.13.4.112

Jota M. S, Lacerda D. R, Sandoval J. R, Vieira P. P. R, Ohasi D, Santos-Júnior J. E, … Santos F. R. 2016. New native South American Y chromosome lineages. Journal of Human Genetics. 61(7):593–603. https://doi.org/10.1038/jhg.2016.26

Kivisild T. 2015. Maternal ancestry and population history from whole mitochondrial genomes. Investigative Genetics. 6: 3. https://doi.org/10.1186/s13323-015-0022-2

Lanfear R, Welch J. J, Bromham L. 2010. Watching the clock: Studying variation in rates of molecular evolution between species. Trends in Ecology and Evolution. https://doi.org/10.1016/j.tree.2010.06.007

Lynch M. 2010. Evolution of the mutation rate. Trends in Genetics. 26: 345–352. https://doi.org/10.1016/j.tig.2010.05.003

Ovchinnikov I. V, Götherström A, Romanova G. P, Kharitonov V. M, Lidén K, Goodwin W. 1997. 1,2,3. New York. 6–8.

Retrieved from https://www.promega.co.uk/~/media/files/resour ces/conference proceedings/ishi 11/oral presentations/goodwin.pdf

Paz-y-Miño C, Cumbal N, Araujo S, Sánchez M. E. 2012. Alterations and Chromosomal Variants in the Ecuadorian Population. Journal of Biomedicine and Biotechnology. 2012: 1–5. https://doi.org/10.1155/2012/432302

Paz-y-Miño C, Guillen Sacoto M. J, Leone P. E. 2016. Genetics and genomic medicine in Ecuador. Molecular Genetics & Genomic Medicine. 4(1): 9–17. https://doi.org/10.1002/mgg3.192

Paz-y-Miño C. 2014. La Historia del Ecuador contada por los genes. Historia de las Ciencias del Ecuador. 29-41p

Pereira R, Phillips C, Pinto N, Santos C, dos Santos S. E. B, Amorim A, … Gusmão L. 2012. Straightforward inference of ancestry and admixture proportions through ancestry- informative insertion deletion multiplexing. PLoS ONE, 7(1). https://doi.org/10.1371/journal.pone.0029684

Pickrell J. K, Reich D. 2014. Toward a new history and geography of human genes informed by ancient DNA. Trends in Genetics : TIG. 30(9): 377–89. https://doi.org/10.1016/j.tig.2014.07.007

Rito T, Richards M. B, Fernandes V, Alshamali F, Cerny V, Pereira L, Soares P. 2013. The first modern human dispersals across Africa. PloS One. 8(11): e80031. https://doi.org/10.1371/journal.pone.0080031

Sánchez M. E, Burgos G, Gaviria A, Aguirre V, Vela M, Leone P. E, Paz-y-Miño C. 2015. Y STRs mutation events in father-son pairs in Ecuadorian individuals. Forensic Science International: Genetics Supplement Series. 5: e310–e311. https://doi.org/10.1016/j.fsigss.2015.09.123

Sigurðardóttir S, Helgason A, Gulcher J. R, K, Donnelly P. 2000. The Mutation Rate in the Human mtDNA Control Region. The American Journal of Human Genetics. 66(5): 1599–1609. https://doi.org/10.1086/302902

Stern D. L, Orgogozo V. 2008. The loci of evolution: How predictable is genetic evolution? Evolution. https://doi.org/10.1111/j.1558- 5646.2008.00450.x

Strausbaugh L, Sakelaris S. 2001. DNA and Early Human HistoryNeandertals and Early Humans: But Did They Mate? Retrieved from http://www.indiana.edu/~ensiweb/dna.nean.pdf

Toscanini U, Gaviria A, Pardo-Seco J, Gómez- Carballa A, Moscoso F, Vela M, … Salas A. 2018. The geographic mosaic of Ecuadorian Y- chromosome ancestry. Forensic Science International: Genetics. 33(June 2017): 59–65. https://doi.org/10.1016/j.fsigen.2017.11.011

Wilke C. O, Wang J. L, Ofria C, Lenski R. E, Adami C. 2001. Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature. 412(6844): 331–333. https://doi.org/10.1038/35085569

Zambrano A. K, Gaviria A, Vela M, Cobos S, Leone P. E, Gruezo C, … Paz-y-Miño C. 2017. Ancestry characterization of Ecuador’s Highland mestizo population using autosomal AIM- INDELs. Forensic Science International: Genetics Supplement Series. 6: e477–e478. https://doi.org/10.1016/J.FSIGSS.2017.09.191