El caminar de los genes y el reloj molecular: Realidad del Ecuador
Contenido principal del artículo
Resumen
La genética convencional y la molecular han acumulado suficientes datos sobre las poblaciones humanas mundiales; por ello, en la actualidad se puede desentrañar el origen fidedigno de cada grupo humano. Una serie de marcadores genéticos han permitido rastrear el origen y la migración humana. STRs, Indels, Mitocondrias, Cromosoma Y, entre los más usados, dan cuenta de la trayectoria de la humanidad y el poblamiento del planeta. La genética moderna nos muestra la composición poblacional de diversas variantes de genes y secuencias no informativas; asàpermiten hoy entender mejor y hasta clasificar grupos poblacionales como etnias. Aunque, el ADN es el mismo para todos los humanos, secuencias no esenciales muestran diferentes frecuencias de presentación según el grupo étnico. Adicionalmente, a través del estudio de los marcadores genéticos, podemos calcular los tiempos migratorios y el momento del origen y expansión de los humanos; lo que se llama el reloj molecular. Este artículo aborda algunos de los conocimientos actuales en genética poblacional, etnicidad y tiempos genéticos, incluso, presenta datos reales de análisis del ADN.
Descargas
Detalles del artículo
Citas
Bromham L, Penny D. 2003. The modern molecular clock. Nature Reviews Genetics. https://doi.org/10.1038/nrg1020
Chen F.-C, Li W.-H. 2001. Genomic Divergences between Humans and Other Hominoids and the Effective Population Size of the Common Ancestor of Humans and Chimpanzees. The American Journal of Human Genetics. 68(2): 444–456. https://doi.org/10.1086/318206
Chorev M, Carmel L. 2012. The function of introns. Frontiers in Genetics. 3: 55. https://doi.org/10.3389/fgene.2012.00055
Devany E, Park J - Y, Murphy M. R, Zakusilo G, Baquero J, Zhang X, … Kleiman F. E. 2016. Intronic cleavage and polyadenylation regulates gene expression during DNA damage response through U1 snRNA. Cell Discovery. 213(10). https://doi.org/10.1038/celldisc.2016.13
Elhaik E, Tatarinova T, Chebotarev D, Piras I. S, Maria Calò C, De Montis A, … Ziegle J. S. 2014. Geographic population structure analysis of worldwide human populations infers their biogeographical origins. Nature Communications. 5:3513. https://doi.org/10.1038/ncomms4513
Francis K. A. 2007. Charles Darwin and the Origin of Species. Retrieved from http://www.evolbiol.ru/docs/docs/large_files/cha rles_darwin.pdf
Fu Q, Mittnik A, Johnson P. L. F, Bos K, Lari M, Bollongino R, … Krause J. 2013. A Revised Timescale for Human Evolution Based on Ancient Mitochondrial Genomes. Current Biology. 23(7): 553–559.
https://doi.org/10.1016/J.CUB.2013.02.044
Galtier N, Nabholz B, Glémin S, Hurst G. D. D. 2009. Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Molecular Ecology, 18(22): 4541–4550. https://doi.org/10.1111/j.1365- 294X.2009.04380.x
Gaviria A, Sánchez M. E, Morejón G, Vela M, Aguirre V, Burgos G, … Paz-y-Miño C. 2013. Characterization and Haplotype analysis of 11 Y- STR loci in Ecuadorian population. Forensic Science International: Genetics Supplement Series. 4(1): 310–311. https://doi.org/10.1016/j.fsigss.2013.10.158
Hasegawa M, Kishino H, Yano T. aki. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution. 22(2): 160–174. https://doi.org/10.1007/BF02101694
Ho S. Y. W, Duchêne S. 2014. Molecular-clock models for estimating evolutionary rates and timescales. Molecular Ecology. 23(24): 5947–65. Retrieved from https://pdfs.semanticscholar.org/5a09/0efbb7961 7f73903c544c9184a2960b52327.pdf
Ho S. Y. W, Larson G. 2006. Molecular clocks: when times are a-changin’. https://doi.org/10.1016/j.tig.2005.11.006
Jo B.-S, Choi S. 2015. Introns: The Functional Benefits of Introns in Genomes. Genomics Inform. 13(4): 112–118. https://doi.org/10.5808/GI.2015.13.4.112
Jota M. S, Lacerda D. R, Sandoval J. R, Vieira P. P. R, Ohasi D, Santos-Júnior J. E, … Santos F. R. 2016. New native South American Y chromosome lineages. Journal of Human Genetics. 61(7):593–603. https://doi.org/10.1038/jhg.2016.26
Kivisild T. 2015. Maternal ancestry and population history from whole mitochondrial genomes. Investigative Genetics. 6: 3. https://doi.org/10.1186/s13323-015-0022-2
Lanfear R, Welch J. J, Bromham L. 2010. Watching the clock: Studying variation in rates of molecular evolution between species. Trends in Ecology and Evolution. https://doi.org/10.1016/j.tree.2010.06.007
Lynch M. 2010. Evolution of the mutation rate. Trends in Genetics. 26: 345–352. https://doi.org/10.1016/j.tig.2010.05.003
Ovchinnikov I. V, Götherström A, Romanova G. P, Kharitonov V. M, Lidén K, Goodwin W. 1997. 1,2,3. New York. 6–8.
Retrieved from https://www.promega.co.uk/~/media/files/resour ces/conference proceedings/ishi 11/oral presentations/goodwin.pdf
Paz-y-Miño C, Cumbal N, Araujo S, Sánchez M. E. 2012. Alterations and Chromosomal Variants in the Ecuadorian Population. Journal of Biomedicine and Biotechnology. 2012: 1–5. https://doi.org/10.1155/2012/432302
Paz-y-Miño C, Guillen Sacoto M. J, Leone P. E. 2016. Genetics and genomic medicine in Ecuador. Molecular Genetics & Genomic Medicine. 4(1): 9–17. https://doi.org/10.1002/mgg3.192
Paz-y-Miño C. 2014. La Historia del Ecuador contada por los genes. Historia de las Ciencias del Ecuador. 29-41p
Pereira R, Phillips C, Pinto N, Santos C, dos Santos S. E. B, Amorim A, … Gusmão L. 2012. Straightforward inference of ancestry and admixture proportions through ancestry- informative insertion deletion multiplexing. PLoS ONE, 7(1). https://doi.org/10.1371/journal.pone.0029684
Pickrell J. K, Reich D. 2014. Toward a new history and geography of human genes informed by ancient DNA. Trends in Genetics : TIG. 30(9): 377–89. https://doi.org/10.1016/j.tig.2014.07.007
Rito T, Richards M. B, Fernandes V, Alshamali F, Cerny V, Pereira L, Soares P. 2013. The first modern human dispersals across Africa. PloS One. 8(11): e80031. https://doi.org/10.1371/journal.pone.0080031
Sánchez M. E, Burgos G, Gaviria A, Aguirre V, Vela M, Leone P. E, Paz-y-Miño C. 2015. Y STRs mutation events in father-son pairs in Ecuadorian individuals. Forensic Science International: Genetics Supplement Series. 5: e310–e311. https://doi.org/10.1016/j.fsigss.2015.09.123
Sigurðardóttir S, Helgason A, Gulcher J. R, K, Donnelly P. 2000. The Mutation Rate in the Human mtDNA Control Region. The American Journal of Human Genetics. 66(5): 1599–1609. https://doi.org/10.1086/302902
Stern D. L, Orgogozo V. 2008. The loci of evolution: How predictable is genetic evolution? Evolution. https://doi.org/10.1111/j.1558- 5646.2008.00450.x
Strausbaugh L, Sakelaris S. 2001. DNA and Early Human HistoryNeandertals and Early Humans: But Did They Mate? Retrieved from http://www.indiana.edu/~ensiweb/dna.nean.pdf
Toscanini U, Gaviria A, Pardo-Seco J, Gómez- Carballa A, Moscoso F, Vela M, … Salas A. 2018. The geographic mosaic of Ecuadorian Y- chromosome ancestry. Forensic Science International: Genetics. 33(June 2017): 59–65. https://doi.org/10.1016/j.fsigen.2017.11.011
Wilke C. O, Wang J. L, Ofria C, Lenski R. E, Adami C. 2001. Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature. 412(6844): 331–333. https://doi.org/10.1038/35085569
Zambrano A. K, Gaviria A, Vela M, Cobos S, Leone P. E, Gruezo C, … Paz-y-Miño C. 2017. Ancestry characterization of Ecuador’s Highland mestizo population using autosomal AIM- INDELs. Forensic Science International: Genetics Supplement Series. 6: e477–e478. https://doi.org/10.1016/J.FSIGSS.2017.09.191