Los genes y proteínas Hsp frente al estrés térmico en insectos

Contenido principal del artículo

María Julia Chacón
Doris Vela

Resumen

Este trabajo recopila información sobre la expresión de los genes y proteínas de choque térmico en respuesta a los cambios de temperatura. Está enfocado en las especies más representativas de los órdenes de insectos más estudiados, a través de las cuales se compara la variación de la expresión de los genes Hsp y proteínas Hsp entre los órdenes y poblaciones de insectos y se expone su posible vínculo con la adaptación ambiental. 

Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
1.
Chacón MJ, Vela D. Los genes y proteínas Hsp frente al estrés térmico en insectos. REMCB [Internet]. 6 de mayo de 2022 [citado 1 de julio de 2022];43(1). Disponible en: https://remcb-puce.edu.ec/remcb/article/view/890
Sección
Artículos de Revisión

Citas

Aamodt RM. 2008. The caste- and age-specific expression signature of honeybee heat shock genes shows an alternative splicing-dependent regulation of Hsp90. Mechanisms of Ageing and Development.129(11): 632–637. doi:10.1016/j.mad.2008.07.002.

Bai J, Liu XN, Lu MX, Du YZ. 2019. Characterization of genes encoding small heat shock proteins from Bemisia tabaci and expression under thermal stress. ZOOLOGICAL SCIENCE. doi:10.7717/peerj.6992.

Basha E, O’Neill H, Vierling E. 2012. Small heat shock proteins and α-crystallins: Dynamic proteins with flexible functions. Trends Biochem Sci. 37(3):106–117. doi:10.1016/j.tibs.2011.11.005.

Bhole D, Allikian MJ, Tower J. 2004. Doxycycline-regulated over-expression of hsp22 has negative effects on stress resistance and life span in adult Drosophila melanogaster. Mech Ageing Dev. 125(9):651–663. doi:10.1016/j.mad.2004.08.010.

Concha C, Edman RM, Belikoff EJ, Schiemann AH, Carey B, Scott MJ. 2012. Organization and expression of the Australian sheep blowfly (Lucilia cuprina) hsp23, hsp24, hsp70 and hsp83 genes. Insect Mol Biol. 21(2):169–180. doi:10.1111/j.1365-2583.2011.01123.x.

Cui YD, Du YZ, Lu MX, Qiang CK. 2010. Cloning of the heat shock protein 60 gene from the stem borer, Chilo suppressalis, and analysis of expression characteristics under heat stress. J Insect Sci. 10(100):1–13. doi:10.1673/031.010.10001.

Dubey A, Prajapati KS, Swamy M, Pachauri V. 2015. Heat shock proteins: A therapeutic target worth to consider. Vet World. 8(1):46–51. doi:10.14202/vetworld.2015.46-51.

Fragkostefanakis S, Roth S, Schleiff E, Scharf K. 2015. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. Plant Cell Environ. 38(9):1881–1895. doi:10.1111/pce.12396.

Franck E, Madsen O, Van Rheede T, Ricard G, Huynen MA, De Jong WW. 2004. Evolutionary diversity of vertebrate small heat shock proteins. J Mol Evol. 59(6):792–805. doi:10.1007/s00239-004-0013-z.

Garczynski SF, Unruh TR, Guédot C, Neven LG. 2011. Characterization of three transcripts encoding small heat shock proteins expressed in the codling moth, Cydia pomonella (Lepidoptera: Tortricidae). Insect Sci. 18(5):473–483. doi:10.1111/j.1744-7917.2010.01401.x.

Giese KC, Vierling E. 2002. Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. J Biol Chem. 277(48):46310–46318. doi:10.1074/jbc.M208926200.

Gruber R, Horovitz A. 2016. Allosteric Mechanisms in Chaperonin Machines. Chem Rev. 116(11):6588–6606. doi:10.1021/acs.chemrev.5b00556.

Haslbeck M, Franzmann T, Weinfurtner D, Buchner J. 2005. Some like it hot: The structure and function of small heat-shock proteins. Nat Struct Mol Biol. 12(10):842–846. doi:10.1038/nsmb993.

Hendrick JP, Hartl F-U. 1993. Molecular Chaperone Functions of Heat-Shock Proteins. Annu Rev Biochem. 62(1):349–384. doi:10.1146/annurev.bi.62.070193.002025.

Hoter A, El-Sabban ME, Naim HY. 2018. The HSP90 family: Structure, regulation, function, and implications in health and disease. Int J Mol Sci. 19(9). doi:10.3390/ijms19092560.

Hoter A, Rizk S, Naim HY. 2020. Heat Shock Protein 60 in Hepatocellular Carcinoma: Insights and Perspectives. Front Mol Biosci. 7:60. doi:10.3389/fmolb.2020.00060.

Huang LH, Kang L. 2007. Cloning and interspecific altered expression of heat shock protein genes in two leafminer species in response to thermal stress. Insect Mol Biol. 16(4):491–500. doi:10.1111/j.1365-2583.2007.00744.x.

Jagla T, Dubińska-Magiera M, Poovathumkadavil P, Daczewska M, Jagla K. 2018. Developmental expression and functions of the small heat shock proteins in drosophila. Int J Mol Sci. 19(11). doi:10.3390/ijms19113441.

Kityk R, Kopp J, Sinning I, Mayer MP. 2012. Structure and Dynamics of the ATP-Bound Open Conformation of Hsp70 Chaperones. Mol Cell. 48(6):863–874. doi:10.1016/j.molcel.2012.09.023.

Kubota H. 2007. Heat Shock Proteins: HSP60 Family Genes. Encyclopedia of Stress.288-299.

Li ZW, Li X, Yu QY, Xiang ZH, Kishino H, Zhang Z. 2009. The small heat shock protein (sHSP) genes in the silkworm, Bombyx mori, and comparative analysis with other insect sHSP genes. BMC Evol Biol. 9(1):215. doi:10.1186/1471-2148-9-215.

Mayer MP. 2013. Hsp70 chaperone dynamics and molecular mechanism. Trends Biochem Sci. 38(10):507–514. doi:10.1016/j.tibs.2013.08.001.

Morrow G, Heikkila JJ, Tanguay RM. 2006. Differences in the chaperone-like activities of the four main small heat shock proteins of Drosophila melanogaster. Cell Stress Chaperones. 11(1):51–60. doi:10.1379/CSC-166.1.

Morrow G, Tanguay R. 2015. Drosophila Small Heat Shock Proteins: An Update on Their Features and Functions. The Big Book on Small Heat Shock Proteins. 8: 579-606.

Pirkkala L, Sistonen L. 2006. Heat Shock Proteins (HSPs): Structure, Function and Genetics. In: Encyclopedia of Life Sciences. Chichester, UK: John Wiley & Sons, Ltd. http://doi.wiley.com/10.1038/npg.els.0006130.

Poulain P, Gelly J, Flatters D. 2010. Detection and Architecture of Small Heat Shock Protein Monomers. PLoS ONE, 5(4): 1-10. doi:10.1371/journal.pone.0009990.

Retzlaff M, Stahl M, Eberl HC, Lagleder S, Beck J, Kessler H, Buchner J. 2009. Hsp90 is regulated by a switch point in the C-terminal domain. EMBO Rep. 10(10):1147–1153. doi:10.1038/embor.2009.153.

Richter K, Haslbeck M, Buchner J. 2010. The Heat Shock Response: Life on the Verge of Death. Mol Cell. 40(2):253–266. doi:10.1016/j.molcel.2010.10.006.

Rowland SE, Robb FT. 2017. Structure, Function and Evolution of the Hsp60 Chaperonins. Springer, Singapore. 3–20. doi: 10.1007/978-981-10-4651-3_1.

Sakano D, Li B, Xia Q, Yamamoto K, Fujii H, Aso Y. 2006. Genes encoding small heat shock proteins of the silkworm, Bombyx mori. Biosci Biotechnol Biochem. 70(10):2443–2450. doi:10.1271/bbb.60176.

Siqueira TCS, Brito DV, Carvalho-Zilse GA. 2018. Research Article Heat shock genes in the stingless bee Melipona interrupta (Hymenoptera, Meliponini). Genet Mol Res. 17(3). doi:10.4238/gmr18062.

Sonoda S, Fukumoto K, Izumi Y, Yoshida H, Tsumuki H. 2006. Cloning of heat shock protein genes (hsp90 andhsc70) and their expression during larval diapause and cold tolerance acquisition in the rice stem borer,Chilo suppressalis Walker. Arch Insect Biochem Physiol. 63(1):36–47. doi:10.1002/arch.20138.

Sun Y, MacRae TH. 2005. Small heat shock proteins: Molecular structure and chaperone function. Cell Mol Life Sci. 62(21):2460–2476. doi:10.1007/s00018-005-5190-4.

Tower J. 2011. Heat shock proteins and Drosophila aging. Exp Gerontol. 46(5):355–362. doi:10.1016/j.exger.2010.09.002.

Wang HH, Reitz SR, Wang LX, Wang SY, Li X, Lei ZR. 2014. The mRNA Expression Profiles of Five Heat Shock Protein Genes from Frankliniella occidentalis at Different Stages and Their Responses to Temperatures and Insecticides. J Integr Agric. 13(10):2196–2210. doi:10.1016/S2095-3119(13)60680-2.

Wrońska AK, Boguś MI. 2020. Heat shock proteins (HSP 90, 70, 60, and 27) in Galleria mellonella (Lepidoptera) hemolymph are affected by infection with Conidiobolus coronatus (Entomophthorales). PLoS One. 15(2). doi:10.1371/journal.pone.0228556.

Yi J, Wu H, Liu J, Lai X, Guo J, Li D, Zhang G. 2018. Molecular characterization and expression of six heat shock protein genes in relation to development and temperature in Trichogramma chilonis. Picard D, editor. PLoS One. 13(9):e0203904. doi:10.1371/journal.pone.0203904.

Young JC. 2010. Mechanisms of the Hsp70 chaperone system. In: Biochemistry and Cell Biology. Vol. 88. National Research Council of Canada 291–300.

Zhang J, Liu B, Li J, Zhang L, Wang Y, Zheng H, Lu M, Chen J. 2015. Hsf and Hsp gene families in Populus: Genome-wide identification, organization and correlated expression during development and in stress responses. BMC Genomics. 16(1):181. doi:10.1186/s12864-015-1398-3.

Zhao EW, Sheng Q, Lv ZB, Chen J, Nie ZM, Wang D, Liu LL, Shen HD, Shu JH, Chen JQ, Wu XF, Zhang RZ. 2009. Expression and functional research of BmHSP20.8 from silkworm, Bombyx mori. Sciencepaper.

Zhao L, Jones WA. 2012. Expression of heat shock protein genes in insect stress responses. Biological Control of Pests Research Unit National Biological Control Laboratory Agricultural Research Service. United States Department of Agriculture.